Pojdi na vsebino

Elipsa

Iz Wikipedije, proste enciklopedije
(Preusmerjeno s strani Pakrog)
Elipsa

Elípsa ali pákróg je v matematiki sklenjena ravninska krivulja ovalne oblike, pri kateri je vsota razdalj katerekoli točke od gorišč F1 in F2 stalna. Elipsa je ena od stožnic.

Slika

[uredi | uredi kodo]

Na sliki so:

  • a velika polos,
  • b mala polos,
  • AB velika os (),
  • CD mala os (),
  • točke A, B, C in D so temena elipse in
  • F1 ter F2 pa gorišči elipse.

Gorišči sta od središča o oddaljeni za . Če z r1 in r2 označimo razdalji od gorišč F1 in F2 do točke X na elipsi (modri črti) sta njuni dolžini in , tako da velja

Parametrizacija

[uredi | uredi kodo]

Če koordinatni osi sovpadata z osema elipse, je kanonična oblika enačba elipse:

parametrična oblika enačbe elipse pa je

Izsrednost (ekscentričnost)

[uredi | uredi kodo]

Polarne koordinate

[uredi | uredi kodo]
, kjer je .

kjer je E(e) popolni eliptični integral druge vrste.

Ramanudžanov približek iz leta 1914:

Še en približek:

Kvadratna forma

[uredi | uredi kodo]

Če elipsa ni v središčni legi in je zavrtena, jo zapišemo s kvadratno formo:

Če forma nima člena z , torej , elipsa ni zavrtena:

Če forma nima člena z , torej , elipsa ni premaknjena v smeri osi x:

Če forma nima člena z , torej , elipsa ni premaknjena v smeri osi y:

Iz te forme se izpelje zgornja kanonična oblika.

Identifikacija

[uredi | uredi kodo]

Če določena kvadratna forma predstavlja elipso, preverimo tako, da koeficiente forme vstavimo v matriki:

in

Forma predstavlja elipso natanko takrat, ko velja:

pri čemer je in

Središče elipse

[uredi | uredi kodo]

Središče elipse je rešitev sistema enačb:

z rešitvijo

Kot vrtenja

[uredi | uredi kodo]

Kot, za katerega je elipsa s poljubnim središčem zavrtena, je

. Če je je

Glej tudi

[uredi | uredi kodo]