Projektivna geometrija

Iz Wikipedije, proste enciklopedije
Skoči na: navigacija, iskanje

Projektivna geometrija je posplošena geometrija, ki poleg običajnih točk kot povsem enakovredne obravnava še točke v neskončnosti.

Prve zamisli na tem področju je razvil Gérard Desargues, njegovo delo pa je pozneje nadaljeval zlasti Jean-Victor Poncelet.

Osnove projektivne geometrije[uredi | uredi kodo]

Glavna zamisel projektivne geometrije je načelo, ki so ga slikarji že zdavnaj spoznali pri upodabljanju perspektive: dve vzporedni premici se sekata v neskončnosti.

Po tem načelu dobimo projektivno geometrijo iz afine geometrije tako, da vsakemu snopu vzporednih premic priredimo točko v neskončnosti - ta točka je potem edino presečišče tega snopa vzporednic. Dodajanje točk v neskončnosti se izkaže za koristno zaradi lažjega opisovnja geometrijskih značilnosti: če moramo pri afini (in tudi pri evklidski) geometriji posebej opisati, kaj velja za vzporedni premici, in posebej, kaj velja za premici, ki se sekata, lahko v projektivni gometriji oboje združimo v isti opis.

Premico, ki smo ji dodali (eno) točko v neskončnosti, imenujemo projektivna premica.

Ravnino, ki smo ji dodali za celo premico točk v neskončnosti (v vsaki smeri po eno točko), imenujemo projektivna ravnina.

(Trirazsežni) prostor, ki smo mu dodali za celo ravnino točk v neskončnosti, imenujemo (trirazsežni) projektivni prostor.

Postopek lahko seveda posplošimo tudi na n-razsežni prostor.

Homogene koordinate[uredi | uredi kodo]

Točke v n-razsežnem projektivnem prostoru opisujemo s homogenimi koordinatami, ki imajo dve značilnosti:

  • Koordinat je n+1 (tj. ena več kot je razsežnost prostora).
  • Če vse koordinate pomnožimo z istim neničelnim številom, dobljene koordinate predstavljajo isto točko kot prvotne.

To si najlažje predstavljamo v projektivni ravnini:

  • Poljubni končni točki, ki ima kartezični koordinati (x,y), priredimo homogene koordinate (x,y,1) oziroma (ax,ay,a) za poljuben neničeln a.
  • Neskončni točki, v kateri se stikajo vse vzporednice s smernim koeficientom k, priredimo homogene koordinate (1,k,0).
  • Neskončni točki, v kateri se stikajo vse vzporednice z ordinatno osjo, priiredimo homogene koordinate (0,1,0).

Poljubno točko projektivne ravnine si lahko zdaj predstavljamo kot trojico koordinat oziroma tudi kot trirazsežni vektor, ki je določen le do množenja z neničelnim številom a natančno.

Projektivne preslikave[uredi | uredi kodo]

Temelj projektivne geometrije predstavljajo projektivne preslikave ali projektivnosti (tudi: kolineacije). To so bijektivne preslikave, ki ohranjajo kolinearnost v projektivnem smislu (torej: vključno z neskončnimi točkami). Pojmi, ki jih projektivne preslikave ohranjajo, so invariante projektivne geometrije. Pomembna invarianta je dvorazmerje točk A, B, C in D.

Če točke n-razsežžnega projektivnega prostora s pomočjo homogenih koordinat zapišemo z vektorji razsežnosti n+1, lahko projektivno transformacijo zapišemo kot obrnljivo matriko razsežnosti (n+1)×(n+1).

Merjenje v projektivni geometriji[uredi | uredi kodo]

Projektivna geometrija sama po sebi ne govori o merjenju razdalj in kotov. Možno pa je vpeljati različne funkcije, ki v projektivni geometriji igrajo vlogo metrike.

Eden od najuspešnejših pristopov na tem področju je projektivna metrika definirana na podlagi dvorazmerja. Ta funkcija ni metrika v smislu aksiomov metrike, vendar pa ima nekatere značilnosti razdalje. Pri primerni izbiri določenih parametrov, lahko s pomočjo te metrike vpeljemo v projektivno geometrijo različne geometije, ki jih imenujemo Cayley-Kleinove geometrije.

Cayley-Kleinove geometrije se delijo na devet osnovnih tipov. Najbolj znane tri med njimi so: evklidska geometrija, hiperbolična geometrija in eliptična geometrija.

Načelo dualnosti[uredi | uredi kodo]

Leta 1825 je Joseph Diaz Gergonne opazil, da v ravninski projektivni geometriji velja načelo dualnosti: vsaka značilnost, ki velja za premice, velja tudi za točke in obratno. Na splošno lahko v vsakem izreku ravninske projektivne geometrije zamenjamo besedi »točke« in »premice« med sabo, pa bo izrek še vedno veljal.

Zgled:

  • Dve točki enolično določata premico (tj. tisto, ki poteka skozi obe točki).
  • Dve premici enolično določata točko (tj. presečišče).

Glej tudi[uredi | uredi kodo]

Viri[uredi | uredi kodo]

  • Vidav, Ivan. Afina in projektivna geometrija. DMFA, Ljubljana 1981. (COBISS)