Matrika

Iz Wikipedije, proste enciklopedije
Skoči na: navigacija, iskanje
Zgradba matrik

Matríka je v matematiki pravokotna razpredelnica števil ali v splošnem elementov kolobarskih algebrskih struktur. V tem članku so elementi matrike realna ali kompleksna števila, če ni drugače rečeno.

Matrike so uporabne za zapis podatkov, ki so odvisni od dveh kategorij, in za proučevanje koeficientov sistemov linearnih enačb in linearnih transformacij.

Za razvoj in uporabo matrik glej teorija matrik.

Definicije in zapisi[uredi | uredi kodo]

Vodoravne črte v matriki so vrstice, navpične pa stolpci. Matrika z m vrsticami in n stolpci se imenuje m×n matrika. m in n sta njeni razsežnosti.

Element matrike A, ki leži v i-ti vrstici in j-tem stolpcu (kjer vrstice in stolpce navadno štejemo od 1 naprej) se imenuje element i,j, oziroma (i,j)-ti element A. To zapišemo kot A[i,j] ali Ai,j, oziroma v C-jevskem zapisu, A[i][j].

Matriko razsežnosti m × n dostikrat definiramo s predpisom A:=(a_{i,j})_{m \times n}, ki določa, da je element matrike A[i,j] enak aij za vse 1 ≤ im in 1 ≤ jn.

Zgled[uredi | uredi kodo]

Matrika

\begin{bmatrix}
1 & 2 & 3 \\
1 & 2 & 7 \\
4&9&2 \\
6&1&5\end{bmatrix}

je 4×3 matrika. Element A[2,3] ali a2,3 je 7.

Seštevanje in množenje matrik[uredi | uredi kodo]

Vsota[uredi | uredi kodo]

Če sta dani dve m×n matriki A in B, lahko določimo njuno vsoto A + B kot m×n matriko, ki jo izračunamo s seštevanjem istoležnih elementov, t. j. (A + B)[i, j] = A[i, j] + B[i, j]. Na primer


  \begin{bmatrix}
    1 & 3 & 2 \\
    1 & 0 & 0 \\
    1 & 2 & 2
  \end{bmatrix}
+
  \begin{bmatrix}
    0 & 0 & 5 \\
    7 & 5 & 0 \\
    2 & 1 & 1
  \end{bmatrix}
=
  \begin{bmatrix}
    1+0 & 3+0 & 2+5 \\
    1+7 & 0+5 & 0+0 \\
    1+2 & 2+1 & 2+1
  \end{bmatrix}
=
  \begin{bmatrix}
    1 & 3 & 7 \\
    8 & 5 & 0 \\
    3 & 3 & 3
  \end{bmatrix}

Vsote matrik ne smemo zamešati z direktno vsoto.

Skalarno množenje[uredi | uredi kodo]

Če sta dana matrika A in število c, lahko določimo skalarno množenje cA z (cA)[i, j] = cA[i, j]. Na primer

2
  \begin{bmatrix}
    1 & 8 & -3 \\
    4 & -2 & 5
  \end{bmatrix}
=
  \begin{bmatrix}
    2\times 1 & 2\times 8 & 2\times -3 \\
    2\times 4 & 2\times -2 & 2\times 5
  \end{bmatrix}
=
  \begin{bmatrix}
    2 & 16 & -6 \\
    8 & -4 & 10
  \end{bmatrix}

Ti dve operaciji pretvorita množico M(m, n, R) vseh m×n matrik z realnimi elementi v realni vektorski prostor z razsežnostjo mn.

Vektorsko množenje[uredi | uredi kodo]

Glavni članek: matrično množenje

Množenje dveh matrik je izvedljivo le, če je število stolpcev prve matrike enako številu vrstic druge matrike. Če je A matrika razsežnosti m-krat-n, (m vrstic, n stolpcev) in je B matrika razsežnosti n-krat-p (n vrstic, p stolpcev), potem je njun produkt AB matrika razsežnosti m-krat-p (m vrstic, p stolpcev) definiran kot:

(AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + ... + A[i, n] * B[n, j] za vsak par i in j.

Primer


  \begin{bmatrix}
    1 & 0 & 2 \\
    -1 & 3 & 1 \\
  \end{bmatrix}
\times
  \begin{bmatrix}
    3 & 1 \\
    2 & 1 \\
    1 & 0
  \end{bmatrix}
=
  \begin{bmatrix}
     (1 \times 3  +  0 \times 2  +  2 \times 1) & (1 \times 1   +   0 \times 1   +   2 \times 0) \\
    (-1 \times 3  +  3 \times 2  +  1 \times 1) & (-1 \times 1   +   3 \times 1   +   1 \times 0) \\
  \end{bmatrix}
=
  \begin{bmatrix}
    5 & 1 \\
    4 & 2 \\
  \end{bmatrix}

Matrično množenje ima naslednje značilnosti:

  • (AB)C = A(BC) za vse k-krat-m matrike A, m-krat-n matrike B in n-krat-p matrike C ("asociativnost").
  • (A + B)C = AC + BC za vse m-krat-n matrike A in B in n-krat-k matrike C ("distributivnost").
  • C(A + B) = CA + CB za vse m-krat-n matrike A in B in k-krat-m matrike C ("distributivnost").

Pomembno se je zavedati, da komutativnost ne velja vedno: običajno je AB ≠ BA. Lahko se zgodi tudi, da je AB = -BA: pravimo, da sta matriki antikomutativni.

Linearne transformacije, rangi in transponiranje[uredi | uredi kodo]

Matrike lahko enostavno predstavljajo linearne preslikave, ker matrično množenje lepo ustreza kompozitumu preslikav, kot bomo videli.

Tu in v nadaljevanju označimo Rn z množico "vrstic" oz. n-krat-1 matrikami. Za vsako linearno preslikavo f : Rn -> Rm obstaja enolična m-krat-n matrika A tako da f(x) = Ax za vse x v Rn.

Rečemo, da matrika A predstavlja linearno preslikavo f. Če k-krat-m matrika B predstavlja še eno linearno preslikavo g : Rm -> Rk, potem linearno preslikavo g o f predstavlja BA. To sledi iz zgoraj omenjene asociativnosti matričnega množenja.

Rang matrike A je razsežnost slike linearne preslikave, ki jo predstavlja A. Ta je enaka kot razsežnost prostora, ki jo tvorijo vrstice matrike A in enaka kot razsežnost, ki jo tvorijo stolpci matrike A.

Transponiranka m-krat-n matrike A je n-krat-m matrika Atr (ponekod se zapiše tudi kot AT ali tA), ki jo dobimo tako, da vrstice obrnemo v stolpce in stolpce v vrstice, se pravi Atr[i, j] = A[j, i] za vse indekse i in j. Če matrika A glede na dani bazi predstavlja določeno linearno preslikavo, matrika Atr predstavlja njeno dualno preslikavo glede na ustrezni dualni bazi.

Velja tudi:

(A + B)tr = Atr + Btr
(AB)tr = Btr * Atr

Kvadratne matrike in sorodne definicije[uredi | uredi kodo]

Kvadratna matrika je matrika, ki ima enako število stolpcev in vrstic. Množica vseh kvadratnih n-krat-n matrik skupaj z operacijo seštevanja in množenja je kolobar. Razen če je n = 1, ta kolobar ni komutativen.

M(n, R), kolobar realnih kvadratnih matrik, je realna unitarna asociativna algebra. M(n, C), kolobar kompleksnih kvadratnih matrik, je kompleksna asociativna algebra.

Enota matrike ali identična matrika In, katere elementi na glavni diagonali imajo vrednost 1, vsi ostali pa 0, zadošča MIn=M in InN=N za katerokoli m-krat-n matriko M in n-krat-k matriko N. Na primer, če je n = 3:


  I_3 =
  \begin{bmatrix}
    1 & 0 & 0 \\
    0 & 1 & 0 \\
    0 & 0 & 1
  \end{bmatrix}

Identična matrika je identični element v obsegu kvadratnih matrik.

Obrnljivi elementi v tem obsegu se imenujejo obrnljive matrike ali nesingularne matrike. Matrika A reda n krat n je torej obrnljiva, če obstaja matrika B, za katero velja AB=BA=In. V tem primeru je B inverzna matrika matrike A, ki jo označimo z A−1. Množica vseh obrnljivih matrik reda n-krat-n tvori grupo (natančneje Liejevo grupo) za množenje matrik, splošno linearno grupo.

Če je λ število in v neničelen vektor, da velja Av = λv, pravimo, da je v lastni vektor matrike A in λ lastna vrednost. Število λ je lastna vrednost matrike A natanko takrat, ko A−λIn ni obrnljiva, kar se zgodi natanko takrat, ko je pA(λ) = 0. pA(x) je karakteristični polinom matrike A. Karakteristični polinom matrike A je stopnje n, ki ima n kompleksnih rešitev. To je polinom stopnje n in ima torej n kompleksnih ničel (vključno z večkratnimi ničlami). V tem pogledu ima vsaka kvadratna matrika n kompleksnih lastnih vrednosti.

Determinanta kvadratne matrike A je produkt njenih n lastnih vrednosti, lahko pa jo definiramo tudi po Leibnizevi formuli. Matrika je obrnljiva natanko tedaj, ko je njena determinanta neničelna.

Algoritem Gauss-Jordanove eliminacije je zelo pomemben: lahko ga uporabimo za računanje determinant, rangov in inverzov matrik ter za računanje sistemov linearnih enačb.

Sled kvadratne matrike je vsota njenih diagonalnih vrednosti, ki je enaka vsoti njenih n lastnih vrednosti.

Med kvadratne matrike sodijo tudi simetrične, hermitske in ortogonalne matrike.

Posebne vrste matrik[uredi | uredi kodo]

V mnogih področjih matematike nastopajo matrike z določenimi posebnimi značilnostmi. Nekaj pomembnih zgledov:

Za obširnejši seznam glej seznam vrst matrik.

Zgodovina[uredi | uredi kodo]

Raziskovanje matrik je dokaj staro. Latinske kvadrate in magične kvadrate so raziskovali že v predzgodovinskih časih.

Matrike že dolgo uporabljamo pri reševanju linearnih enačb. Gottfried Wilhelm Leibniz, eden od utemeljiteljev diferencialnega računa, je razvil teorijo determinat leta 1693. Gabriel Cramer je teorijo razvil naprej in leta 1750 vpeljal Cramerjevo pravilo. Carl Friedrich Gauss in Wilhelm Jordan sta razvila Gauss-Jordanovo eliminacijsko metodo v začetku 19. stoletja.

Izraz »matrika« je prvi skoval leta 1848 James Joseph Sylvester. Cayley, Hamilton, Grassmann, Frobenius in von Neumann so veliko raziskovali matrike in njihovo teorijo.

Glej tudi[uredi | uredi kodo]

Zunanje povezave[uredi | uredi kodo]