Polpraštevilo

Iz Wikipedije, proste enciklopedije
Skoči na: navigacija, iskanje
Množice celih števil
glede na deljivost
Oblika razcepa:
praštevilo
sestavljeno
popolna potenca
močno
polpraštevilo
deljivo brez kvadrata
Ahilovo
Vsiljene vsote deliteljev:
popolno
skoraj popolno
navidezno popolno
mnogokratno popolno
hiperpopolno
enotno popolno
polpopolno
primitivno polpopolno
praktično
Števila z mnogo delitelji:
obilno
zelo obilno
nadobilno
izjemno obilno
zelo sestavljeno
izredno zelo sestavljeno
Drugo:
nezadostno
čudno
prijateljsko
tovariško
družabno
osamljeno
vzvišeno
s harmoničnimi delitelji
varčno
enakoštevčno
potratno
nedotakljivo
Glej tudi:
število deliteljev
delitelj
prafaktor
praštevilski razcep
faktorizacija

Pólpráštevilo je v matematiki naravno število, ki je produkt dveh (ne nujno različnih) praštevil. Prva polpraštevila so (OEIS A001358):

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, ...

Vsak kvadrat poljubnega praštevila je polpraštevilo, tako da bo največje znano polpraštevilo vedno kvadrat največjega znanega praštevila, razen če prafaktorja polpraštevila nista znana. Razumljivo je, da se lahko dokaže, da je večje število polpraštevilo brez da bi poznali njuna prafaktorja, vendar se je to zgodilo za manjša polpraštevila.[1]

Značilnosti[uredi | uredi kodo]

Skupno število prafaktorjev Ω(n) za polpraštevilo n je po definiciji enako 2. Polpraštevilo je kvadrat praštevila ali pa je deljivo brez kvadrata.

Za polpraštevilo n = pq je vrednost Eulerjeve funkcije φ (število pozitivnih celih števil manjših ali enakih n, ki so tuja n) še posebej preprosta, ko sta p in q različna:

φ(n) = (p − 1) (q − 1) = p q − (p + q) + 1 = n − (p + q) + 1.

Če sta drugače p in q enaka, je:

φ(n) = φ(p2) = (p − 1) p = p2p = np.

Koncept praštevilske funkcije ζ se lahko prilagodi na polpraštevila, kar vodi do definicij konstant, kot so:

\sum_{\Omega(n)=2} \frac{1}{n^2} \approx 0,1407604 \!\, (OEIS A117543)
\sum_{\Omega(n)=2} \frac{1}{n(n-1)} \approx 0,17105 \!\, (OEIS A152447)
\sum_{\Omega(n)=2} \frac{\ln n}{n^2} \approx 0,28360 \!\, (OEIS A154928)

Sklici[uredi | uredi kodo]

  1. ^ Caldwell, Chris. "The Prime Glossary: semiprime". Prime Pages (v angleščini). Pridobljeno dne 2007-12-04.