Gaussova konstanta

Iz Wikipedije, proste enciklopedije
Skoči na: navigacija, iskanje

Gaussova konstánta [gáusova ~] (oznaka G) je v matematiki konstanta, določena kot obratna vrednost aritmetično-geometrične sredine števila 1 in kvadratnega korena iz 2 (OEIS A014549):

Imenuje se po Carlu Friedrichu Gaussu, ki je 30. maja 1799 odkril zvezo:

tako, da je:

kjer je funkcija Β.

Gaussove konstante se ne sme zamenjevati z Gaussovo gravitacijsko konstanto.

Povezava z drugimi konstantami[uredi | uredi kodo]

Z Gaussovo konstanto se lahko izrazi funkcijo Γ za argument 1/4:

Ker sta π in Γ(1/4) algebrsko neodvisna, kjer je Γ(1/4) iracionalno število, je Gaussova konstanta transcendentna. Transcendentnost Gaussove konstante je leta 1937 dokazal Theodor Schneider.[1]

Lemniskatini konstanti[uredi | uredi kodo]

S pomočjo Gaussove konstante se lahko določi lemniskatini konstanti:

ki se pojavljata pri določevanju dolžine loka (Bernoullijeve) lemniskate. Tu je M obratna vrednost Gaussove konstante (OEIS A053004):

Gauss je izvirno obravnaval prvo lemniskatino konstanto in jo označeval z ϖ, po analogiji z vrednostima integralov:

(OEIS A062539),

Algebrsko neodvisnost in od je leta 1975 pokazal Gregory Chudnovsky.[2][3]

Druge formule[uredi | uredi kodo]

Formula za G z Jacobijevo funkcijo ϑ je:

ter tudi s hitro konvergentno neskončno vrsto:

Gaussova konstanta je podana tudi z neskončnim produktom:

Pojavi se pri izračunavanju integralov:

Neskončni verižni ulomek Gaussove konstante je (OEIS A053002):

Ker Gaussova konstanta G ni kvadratno iracionalno število, njen verižni ulomek ni periodičen.

Glej tudi[uredi | uredi kodo]

Sklici[uredi | uredi kodo]

Viri[uredi | uredi kodo]

Zunanje povezave[uredi | uredi kodo]