Matematični dokaz

Iz Wikipedije, proste enciklopedije
Skoči na: navigacija, iskanje

Dokàz v matematiki pomeni prikaz, da je, pri določenih aksiomih, izjava, ki je predmet zanimanja, nujno resnična.

Namen matematičnih dokazov[uredi | uredi kodo]

Dokazi se ukvarjajo z logiko, vendar navadno vključujejo tudi določeno mero naravnega jezika, zaradi česar so lahko malce nejasni. V resnici je večina dokazov v zapisani matematiki pravzaprav raba neformalne logike. V kontekstu teorije dokaza, kjer se upoštevajo formalni dokazi, takšnim ne popolnoma formalnim prikazom v matematiki pogosto rečejo »družbeni dokazi«. Z vlogo jezika in logike v dokazih se ukvarja filozofija matematike.

Včasih zadostuje, da se bralca z razumljivo skico dokaza prepriča, da se izrek dá formalno dokazati, ne da bi bilo treba zares izvesti dolg in nejasen formalen dokaz. Vendar mora biti matematično izobraženemu bralcu povsem jasno, kako bi izrek po tej skici dokazal tudi formalno iz samih aksiomov, če bi ga moral ali želel.

Tehnike dokazovanja[uredi | uredi kodo]

Ne glede na odnos posameznika do formalizma, je rezultat, za katerega se dokaže, da je resničen, izrek; v popolnoma formalnem dokazu bi bila to zadnja vrstica, ves dokaz pa bi prikazoval, kako ta vrstica sledi iz samih aksiomov. Ko je enkrat izrek dokazan, se ga lahko uporablja kot osnovo za dokazovanje nadaljnjih izjav. Tako imenovani temelji matematike predstavljajo izjave, ki se jih ne da dokazati, ali pa tega ni treba. Včasih so predstavljali glavnino študija filozofov matematike. Danes se ti osredotočajo bolj na prakso, se pravi sprejemljive tehnike.

Nekatere pogoste tehnike dokazovanja so:

  • direktni dokaz, kjer sklepi sledijo z logičnim kombiniranjem aksiomov, definicij in prejšnjih izrekov;
  • dokaz z indukcijo, kjer se dokaže bazni primer, in indukcijski korak, s katerim se dokaže, da iz prejšnjega primera sledijo vsi naslednji (pogosto jih je neskončno);
  • dokaz s protislovjem, kjer se dokaže, da se iz privzete neresničnosti izjave po logičnem sklepu pride do protislovja, zato mora biti izjava pravilna;
  • konstruktivni dokaz, kjer se konstruira konkreten primer z značilnostjo, ki dokazuje, da obstaja nekaj, ki ima to značilnost;
  • dokaz s surovo silo, kjer se sklep dobi tako, da se ga razdeli na končno množico posameznih primerov in se dokaže vsakega posebej.

Verjetnostni dokaz naj bi pomenil dokaz obstoja primera z metodami teorije verjetnosti - ne argument, da je izrek »verjetno« resničen. Slednji vrsti sklepanja se lahko reče »verodostojen argument«; zgled Collatzeve domneve pokaže, kako daleč je ta od pravega dokaza. Verjetnostni dokaz je ena od številnih možnosti za dokaz izrekov o obstoju, razen konstrukcijskega dokaza.

Kombinatorični dokaz vzpostavi enakost različnih izrazov tako, da pokaže, da se na različne načine štejejo isti objekti. Navadno se za prikaz tega uporablja kakšna bijektivna preslikava.

Če se želi dokazati, denimo, da »značilnost f(X) velja za nekatere X«, potem se z nekonstruktivnim dokazom dokaže, da res obstaja X, za katerega velja f(X), vendar ne pojasni, kako se lahko takšen X zares dobi. Konstruktivni dokaz pojasni tudi to.

Izjava, za katero se domneva, da je resnična, vendar še ni bila dokazana, se imenuje domneva.

Včasih je mogoče dokazati, da se določene izjave nikakor ne da dokazati z danim naborom aksiomov; glej npr. domneva kontinuuma. Presenetljivo, po Gödlovem izreku o nepopolnosti, celo v večini aksiomskih sistemov obstajajo izjave, ki se jih ne da niti dokazati, niti ovreči.

Znani matematični dokazi[uredi | uredi kodo]

Diferencialna topologija[uredi | uredi kodo]

Matematična analiza[uredi | uredi kodo]

Teorija grafov[uredi | uredi kodo]

Teorija množic[uredi | uredi kodo]

Teorija števil[uredi | uredi kodo]

Glej tudi[uredi | uredi kodo]