Obratna matrika

Iz Wikipedije, proste enciklopedije
Skoči na: navigacija, iskanje

Obratna matrika (oznaka za matriko ) (tudi inverzna matrika ali nesingularna matrika ali nedegenerirana) neke kvadratne matrike je takšna matrika, ki pri množenju z matriko daje enotsko matriko:

kjer je:

  • enotska matrika reda n (razsežnosti )
  • obratna matrika matrike .

Velja tudi:

Matrike, ki imajo obratno matriko, so obrnljive. Matrika je obrnljiva samo, če je nesingularna. Nekvadratne matrike nimajo obratne matrike (). V nekaterih primerih se lahko določi levo in desno obratno matriko. Kadar ima matrika razsežnost in je njen rang enak , potem ima matrika levo obratno matriko, tako da velja , in ima matrika razsežnost . Kadar pa ima matrika rang enak , potem ima desno obratno matriko z , tako da je .

Značilnosti obratne matrike[uredi | uredi kodo]

kjer je:
determinanta matrike
  • za poljubni dve obrnljivi matriki in
kjer je:
transponirana matrika
  • za poljubni koeficient
  • za poljubni od nič različni skalar
  • za obrnljivi matriki in z velja:
. Bolj splošno se lahko tudi napiše, če so obrnljive matrike, potem je

Določanje obratne matrike[uredi | uredi kodo]

Cramerjevo pravilo[uredi | uredi kodo]

Glavni članek: Cramerjevo pravilo.

Za določitev obratne matrike se najprej napiše matriko kofaktorjev (adjungirana matrika):

kjer je:

  • determinanta matrike
  • elementi matrike kofaktorjev
  • transponirana matrika

Gauss-Jordanova eliminacija[uredi | uredi kodo]

Gauss-Jordanova eliminacija omogoča ugotoviti, če je neka matrika obrnljiva in določiti tudi obratno matriko. Uporablja se samo za kvadratne matrike. V postopku se najprej dano matriko poveča z enotsko matriko istega reda (dobi se obliko ). Nato se z enostavnimi matričnimi operacijami matriko privede v obliko (na levi strani je enotska matrika, na desni pa obratna matrika prvotne). Obratno matriko se prebere na desni strani nastale matrike. Podobna metoda se uporablja tudi za reševanje sistema linearnih enačb (Gaussova eliminacijska metoda).

Obratna matrika matrike [uredi | uredi kodo]

Obratno matriko matrike z razsežnostjo se lahko dobi na naslednji način:

Obratna matrika matrike [uredi | uredi kodo]

Obratno matriko v primeru, da se obravnava matriko z razsežnostjo pa se dobi iz:

kjer je:

  • determinanta dane matrike

Če je različen od 0, je matrika obrnljiva in ima naslednje elemente (glej zgoraj):

Zunanje povezave[uredi | uredi kodo]