# 7-simpleks

pravilni oktaekson
(7-simpleks)

Ortogonalna projekcija
v Petriejevem mnogokotniku
vrsta pravilni 7-politop
družina simpleks
Schläflijev simbol {3,3,3,3,3,3}
Coxeter-Dinkinov diagram
6-stranske ploskve 8 6-simpleks
5-stranske ploskve 28 5-simpleks
4-stranske ploskve 56 5-celica
celice 70 tetraeder
stranske ploskve 56 trikotnik
robovi 28
oglišča 8
slika oglišč 6-simpleks
Petriejev mnogokotnik osemkotnik
Coxeterjeva grupa A7 [3,3,3,3,3,3]
dualnost sebidualni
značilnosti konveksni

7-simpleks (tudi oktaekson ali oktatop) je v 7-razsežni geometriji sebi dualni pravilni 7-politop. Ima 8 oglišč, 28 robov, 56 trikotnih stranskih ploskev, 70 tetraederskih celic, 56 5-celic s 5 stranskimi ploskvami, 28 5-simpleksov s 6 stranskimi ploskvami in 8 6-simpleksov s 7 stranskimi ploskvami. Ima diedrski kot cos−1(1/7)kar je približno 81,79°.

## Koordinate oglišč

${\displaystyle \left({\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ {\sqrt {1/6}},\ {\sqrt {1/3}},\ \pm 1\right)}$
${\displaystyle \left({\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ {\sqrt {1/6}},\ -2{\sqrt {1/3}},\ 0\right)}$
${\displaystyle \left({\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ -{\sqrt {3/2}},\ 0,\ 0\right)}$
${\displaystyle \left({\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ -2{\sqrt {2/5}},\ 0,\ 0,\ 0\right)}$
${\displaystyle \left({\sqrt {1/28}},\ {\sqrt {1/21}},\ -{\sqrt {5/3}},\ 0,\ 0,\ 0,\ 0\right)}$
${\displaystyle \left({\sqrt {1/28}},\ -{\sqrt {12/7}},\ 0,\ 0,\ 0,\ 0,\ 0\right)}$
${\displaystyle \left(-{\sqrt {7/4}},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)}$

## Sorodni politopi

 t0 t1 t2 t3 t0,1 t0,2 t1,2 t0,3 t1,3 t2,3 t0,4 t1,4 t2,4 t0,5 t1,5 t0,6 t0,1,2 t0,1,3 t0,2,3 t1,2,3 t0,1,4 t0,2,4 t1,2,4 t0,3,4 t1,3,4 t2,3,4 t0,1,5 t0,2,5 t1,2,5 t0,3,5 t1,3,5 t0,4,5 t0,1,6 t0,2,6 t0,3,6 t0,1,2,3 t0,1,2,4 t0,1,3,4 t0,2,3,4 t1,2,3,4 t0,1,2,5 t0,1,3,5 t0,2,3,5 t1,2,3,5 t0,1,4,5 t0,2,4,5 t1,2,4,5 t0,3,4,5 t0,1,2,6 t0,1,3,6 t0,2,3,6 t0,1,4,6 t0,2,4,6 t0,1,5,6 t0,1,2,3,4 t0,1,2,3,5 t0,1,2,4,5 t0,1,3,4,5 t0,2,3,4,5 t1,2,3,4,5 t0,1,2,3,6 t0,1,2,4,6 t0,1,3,4,6 t0,2,3,4,6 t0,1,2,5,6 t0,1,3,5,6 t0,1,2,3,4,5 t0,1,2,3,4,6 t0,1,2,3,5,6 t0,1,2,4,5,6 t0,1,2,3,4,5,6