Pojdi na vsebino

Seznam integralov eksponentnih funkcij

Seznam integralov eksponentnih funkcij vsebuje integrale eksponentnih funkcij.

Nedoločeni integrali

Nedoločeni integrali so primitivne funkcije. Aditivno konstanto lahko dodamo na desni strani vsakega izmed obrazcev, tukaj so te konstante izpuščene zaradi enostavnosti.

${\displaystyle \int e^{x}\;\mathrm {d} x=e^{x}}$
${\displaystyle \int e^{cx}\;\mathrm {d} x={\frac {1}{c}}e^{cx}}$
${\displaystyle \int a^{cx}\;\mathrm {d} x={\frac {1}{c\cdot \ln a}}a^{cx}}$ za ${\displaystyle a>0,\ a\neq 1}$
${\displaystyle \int xe^{cx}\;\mathrm {d} x={\frac {e^{cx}}{c^{2}}}(cx-1)}$
${\displaystyle \int x^{2}e^{cx}\;\mathrm {d} x=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)}$
${\displaystyle \int x^{n}e^{cx}\;\mathrm {d} x={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}\mathrm {d} x=\left({\frac {\partial }{\partial c}}\right)^{n}{\frac {e^{cx}}{c}}}$
${\displaystyle \int {\frac {e^{cx}}{x}}\;\mathrm {d} x=\ln |x|+\sum _{n=1}^{\infty }{\frac {(cx)^{n}}{n\cdot n!}}}$
${\displaystyle \int {\frac {e^{cx}}{x^{n}}}\;\mathrm {d} x={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}}{x^{n-1}}}\,\mathrm {d} x\right)\qquad {\mbox{(za }}n\neq 1{\mbox{)}}}$
${\displaystyle \int e^{cx}\ln x\;\mathrm {d} x={\frac {1}{c}}e^{cx}\ln |x|-\operatorname {Ei} \,(cx)}$
${\displaystyle \int e^{cx}\sin bx\;\mathrm {d} x={\frac {e^{cx}}{c^{2}+b^{2}}}(c\sin bx-b\cos bx)}$
${\displaystyle \int e^{cx}\cos bx\;\mathrm {d} x={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\sin bx)}$
${\displaystyle \int e^{cx}\sin ^{n}x\;\mathrm {d} x={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}}}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\sin ^{n-2}x\;\mathrm {d} x}$
${\displaystyle \int e^{cx}\cos ^{n}x\;\mathrm {d} x={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\;\mathrm {d} x}$
${\displaystyle \int xe^{cx^{2}}\;\mathrm {d} x={\frac {1}{2c}}\;e^{cx^{2}}}$
${\displaystyle \int e^{-cx^{2}}\;\mathrm {d} x={\sqrt {\frac {\pi }{4c}}}\operatorname {erf} ({\sqrt {c}}x)}$
${\displaystyle \int xe^{-cx^{2}}\;\mathrm {d} x=-{\frac {1}{2c}}e^{-cx^{2}}}$
${\displaystyle \int {1 \over \sigma {\sqrt {2\pi }}}\,e^{-{(x-\mu )^{2}/2\sigma ^{2}}}\;\mathrm {d} x=-{\frac {1}{2}}\left(\operatorname {erf} \,{\frac {-x+\mu }{\sigma {\sqrt {2}}}}\right)\ \ \ }$ (erf je funkcija napake)
${\displaystyle \int e^{x^{2}}\,\mathrm {d} x=e^{x^{2}}\left(\sum _{j=0}^{n-1}c_{2j}\,{\frac {1}{x^{2j+1}}}\right)+(2n-1)c_{2n-2}\int {\frac {e^{x^{2}}}{x^{2n}}}\;\mathrm {d} x\quad {\mbox{velja za }}n>0,}$
where ${\displaystyle c_{2j}={\frac {1\cdot 3\cdot 5\cdots (2j-1)}{2^{j+1}}}={\frac {(2j)\,!}{j!\,2^{2j+1}}}\ .}$
${\displaystyle {\int \underbrace {x^{x^{\cdot ^{\cdot ^{x}}}}} _{m}\,dx=\sum _{n=0}^{m}{\frac {(-1)^{n}(n+1)^{n-1}}{n!}}\Gamma (n+1,-\ln x)+\sum _{n=m+1}^{\infty }(-1)^{n}a_{mn}\Gamma (n+1,-\ln x)\qquad {\mbox{(za }}x>0{\mbox{)}}}}$
where ${\displaystyle a_{mn}={\begin{cases}1&{\text{kadar je }}n=0,\\{\frac {1}{n!}}&{\text{kadar je }}m=1,\\{\frac {1}{n}}\sum _{j=1}^{n}ja_{m,n-j}a_{m-1,j-1}&{\text{v ostalih primerih }}\end{cases}}}$
in ${\displaystyle \Gamma (x,y)}$ je gama funkcija
${\displaystyle \int {\frac {1}{ae^{\lambda x}+b}}\;\mathrm {d} x={\frac {x}{b}}-{\frac {1}{b\lambda }}\ln \left(ae^{\lambda x}+b\right)\,}$ kadar je ${\displaystyle b\neq 0}$, ${\displaystyle \lambda \neq 0}$ in ${\displaystyle ae^{\lambda x}+b>0\,.}$
${\displaystyle \int {\frac {e^{2\lambda x}}{ae^{\lambda x}+b}}\;\mathrm {d} x={\frac {1}{a^{2}\lambda }}\left[ae^{\lambda x}+b-b\ln \left(ae^{\lambda x}+b\right)\right]\,}$ kadar je ${\displaystyle a\neq 0}$, ${\displaystyle \lambda \neq 0}$ in ${\displaystyle ae^{\lambda x}+b>0\,}$.

Določeni intagrali

${\displaystyle \int _{0}^{1}e^{x\cdot \ln a+(1-x)\cdot \ln b}\;\mathrm {d} x=\int _{0}^{1}\left({\frac {a}{b}}\right)^{x}\cdot b\;\mathrm {d} x=\int _{0}^{1}a^{x}\cdot b^{1-x}\;\mathrm {d} x={\frac {a-b}{\ln a-\ln b}}}$ za ${\displaystyle a>0,\ b>0,\ a\neq b}$, kar je logaritemska sredina
${\displaystyle \int _{0}^{\infty }e^{ax}\,\mathrm {d} x={\frac {1}{|a|}}\quad (a<0)}$
${\displaystyle \int _{0}^{\infty }e^{-ax^{2}}\,\mathrm {d} x={\frac {1}{2}}{\sqrt {\pi \over a}}\quad (a>0)}$ (Gaussov integral)
${\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}\,\mathrm {d} x={\sqrt {\pi \over a}}\quad (a>0)}$
${\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}e^{-2bx}\,\mathrm {d} x={\sqrt {\frac {\pi }{a}}}e^{\frac {b^{2}}{a}}\quad (a>0)}$ (glej integral Gaussove funkcije)
${\displaystyle \int _{-\infty }^{\infty }xe^{-a(x-b)^{2}}\,\mathrm {d} x=b{\sqrt {\frac {\pi }{a}}}}$
${\displaystyle \int _{-\infty }^{\infty }x^{2}e^{-ax^{2}}\,\mathrm {d} x={\frac {1}{2}}{\sqrt {\pi \over a^{3}}}\quad (a>0)}$
${\displaystyle \int _{0}^{\infty }x^{n}e^{-ax^{2}}\,\mathrm {d} x={\begin{cases}{\frac {1}{2}}\Gamma \left({\frac {n+1}{2}}\right)/a^{\frac {n+1}{2}}&(n>-1,a>0)\\{\frac {(2k-1)!!}{2^{k+1}a^{k}}}{\sqrt {\frac {\pi }{a}}}&(n=2k,k\;{\text{integer}},a>0)\\{\frac {k!}{2a^{k+1}}}&(n=2k+1,k\;{\text{integer}},a>0)\end{cases}}}$ (!! pomeni dvojno fakulteto)
${\displaystyle \int _{0}^{\infty }x^{n}e^{-ax}\,\mathrm {d} x={\begin{cases}{\frac {\Gamma (n+1)}{a^{n+1}}}&(n>-1,a>0)\\{\frac {n!}{a^{n+1}}}&(n=0,1,2,\ldots ,a>0)\\\end{cases}}}$
${\displaystyle \int _{0}^{\infty }e^{-ax}\sin bx\,\mathrm {d} x={\frac {b}{a^{2}+b^{2}}}\quad (a>0)}$
${\displaystyle \int _{0}^{\infty }e^{-ax}\cos bx\,\mathrm {d} x={\frac {a}{a^{2}+b^{2}}}\quad (a>0)}$
${\displaystyle \int _{0}^{\infty }xe^{-ax}\sin bx\,\mathrm {d} x={\frac {2ab}{(a^{2}+b^{2})^{2}}}\quad (a>0)}$
${\displaystyle \int _{0}^{\infty }xe^{-ax}\cos bx\,\mathrm {d} x={\frac {a^{2}-b^{2}}{(a^{2}+b^{2})^{2}}}\quad (a>0)}$
${\displaystyle \int _{0}^{2\pi }e^{x\cos \theta }d\theta =2\pi I_{0}(x)}$ (${\displaystyle I_{0}}$ je modificirana Besselova funkcija prve vrste)
${\displaystyle \int _{0}^{2\pi }e^{x\cos \theta +y\sin \theta }d\theta =2\pi I_{0}\left({\sqrt {x^{2}+y^{2}}}\right)}$