Gaussova eliminacijska metoda

Iz Wikipedije, proste enciklopedije
Skoči na: navigacija, iskanje

Gaussova eliminacíjska metóda [gáusova ~] omogoča rešitev sistema n linearnih enačb. Koeficiente pri posameznih linearnih enačbah zapišemo v matriko.

Psevdo algoritem za matriko velikosti n × m:

b = 1
dokler matrika ni vektor
 če a_{b,b} = 0
  zamenjamo b-to vrstico s prvo, ki v b-tem stolpcu nima ničle 
 sicer
  za vsako vrstico x od b do n
   prvo vrstico v trenutni matriki pomnožimo z -a_{x,b}/a_{b,b} in jo prištejemo trenutni vrstici
 b = b + 1

S to metodo dobimo iz matrike razsežnosti n × n zgornjetrikotno matriko.

Gaussova eliminacijska metoda v numerični matematiki[uredi | uredi kodo]

Zaradi omejene natančnosti računalnikov se izkaže, da ni vseeno, kako računamo z Gaussovo eliminacijo. Ker lahko pri deljenju pride do velikih napak, če delimo z majhnim številom, se za izogib napakam izplača za diagonalni element z zamenjavo vrstic vzeti največjega izmed možnih.

Izvajanje Gaussove eliminacije nad eno matriko razsežnosti n × n zahteva n^3 operacij.

Glej tudi[uredi | uredi kodo]