Iz Wikipedije, proste enciklopedije
Legendrovi polinómi [ležándrovi ~] so rešitve Legendrove diferencialne enačbe:
Imenovani so po Adrien-Marieu Legendru. Ta navadna diferencialna enačba je pogosto rabljena v fiziki in na drugih tehničnih področjih. Pojavi se pri reševanju Laplaceove enačbe in sorodnih parcialnih diferencialnih enačbah v sfernih koordinatah.
Pomembna značilnost Legendrovih polinomov je, da so ortogonalni v L2 na intervalu −1 ≤ x ≤ 1:
(kjer je δmn oznaka za Kroneckerjevo delto, ki je 1, ko je m = n in 0 sicer).
Prvih nekaj Legendrovih polinomov:
n |
|
0 |
|
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|