Legendrov simbol

Iz Wikipedije, proste enciklopedije
Skoči na: navigacija, iskanje

Legendrov simból [ležándrov ~] je v teoriji števil simbol, ki se uporablja pri faktorizaciji in kvadratnih ostankih. Simbol je uvedel Adrien-Marie Legendre.

Definicija[uredi | uredi kodo]

Legendrov simbol je poseben primer Jacobijevega simbola. Odvisen je od tega ali za dve celi števili p in a velja:

  • (oziroma p deli a), ali
  • (oziroma a je kvadrat mod p) ali
  • (oziroma a ni kvadrat mod p).

Če je p liho praštevilo in a celo število je Legendrov simbol:

Simbol se označuje tudi kot:

Značilnosti Legendrovega simbola[uredi | uredi kodo]

Legendrov simbol ima več uporabnih značilnosti, ki pospešijo računanje:

  1. (je popolnoma multiplikativna funkcija za zgornji argument)
  2. Če je ab (mod p), potem velja
  3. , oziroma = 1, če je p ≡ 1 (mod 4) in = −1, če je p ≡ 3 (mod 4)
  4. , oziroma = 1, če je p ≡ 1 ali 7 (mod 8) in = −1, če je p ≡ 3 ali 5 (mod 8)
  5. Za liho praštevilo q velja

Zadnja značilnost je znana kot kvadratični reciprocitetni zakon. Značilnosti 4 in 5 sta tradicionalno znani kot dodatka h kvadratni recipročnosti. Dokazati ju je moč z Gaussovo lemo.

Legendrov simbol je povezan z Eulerjevim kriterijem. Euler je dokazal, da velja:

Legendrov simbol je tudi Dirichletov karakter.

Sorodne funkcije[uredi | uredi kodo]

Jacobijev simbol je posplošitev Legendrovega simbola, ki dovoljuje sestavljena spodnja števila. S posplošitvijo je moč uspešno računati Legendrove simbole.

Druga posplošitev je Kroneckerjev simbol.