Uvod v najtežje elemente

Iz Wikipedije, proste enciklopedije
Jump to navigation Jump to search
A graphic depiction of a nuclear fusion reaction
Grafični prikaz jedrske fuzijske reakcije. Dve jedri se zlijeta v eno in oddajata nevtron. Reakcije, ki so do sedaj ustvarile nove elemente, so bile podobne, z edino možno razliko, da je včasih prišljo do emisije več singularnih nevtronov ali pa do emisije sploh ni prišlo. Neutron je angleška beseda za nevtron.

Najtežja[a] jedra nastanejo v jedrskih reakcijah, ki združijo dve drugi jedri neenake velikosti[b] v eno; v grobem velja, da bolj, kot sta jedri glede na maso neenaki, večja je možnost, da bosta reagirali.[6] Iz materiala iz težjih jeder se naredi tarča, ki jo nato bombardira snop lažjih jeder. Dve jedri se lahko združita v eno samo, če se dovolj približata; normalno se jedra (vsa pozitivno nabita) med seboj odbijajo zaradi elektrostatičnega odbijanja. Močna interakcija lahko to odbojnost premaga, vendar le na zelo kratki razdalji od jedra; jedra žarka se tako močno pospeši, da postane taka odbojnost nepomembna v primerjavi s hitrostjo jedra v snopu.[7] Samo približevanje ni dovolj, da se dve jedri zlijeta: ko se dve jedri približata, običajno ostaneta skupaj približno 10−20 sekunde in se nato ločita (ne nujno v isti sestavi kot pred reakcijo), namesto da tvorita eno jedro.[7][8] Če pride do fuzije, je začasna združitev, imenovana sestavljeno jedro, vzbujeno stanje. Da bi izgubilo energijo vzbujenja in doseglo stabilnejše stanje, se sestavljeno jedro razcepi ali izvrže enega ali več nevtronov,[c] ki odnesejo odvečno energijo.[9][d]

Žarek prehaja skozi tarčo in doseže naslednjo komoro – separator; če novo jedro nastane, potuje skupaj s tem žarkom.[12] V separatorju se novo nastalo jedro loči od drugih nuklidov (prvotnega žarka in vseh drugih reakcijskih produktov)[e] in prenese v pregradno-površinski detektor, ki jedro ustavi. Tam je zaznana natančna lokacija prihajajočega udarca na detektor; prav tako tudi njegova energija in čas prihoda.[12] Prenos traja približno 10−6 sekunde; da jo lahko zazna, jedro med tem ne sme razpasti.[15] Jedro se ponovno zabeleži, ko se zabeleži njegovo razpadanje in izmeri lokacija, energija in čas razpada.[12]

Stabilnost jedra zagotavlja močna interakcija, vendar je njegov obseg zelo kratek; ko jedra povečamo, vpliv močne interakcije na najbolj oddaljene nukleone (protone in nevtrone) oslabi. Prav tako jedro raztrga elektrostatično odbijanje med protoni, saj ima neomejen domet.[16] Za jedra najtežjih elementov je tako teoretično napovedan[17] in doslej opazovan[18] predvsem propad z razpadnimi načini, ki jih povzroča takšna odbijanje: alfa razpad in spontana cepitev;[f] ti načini prevladujejo za jedra supertežkih elementov. Alfa razpadi so zaznani z oddajanjem alfa delcev, produkte razpada pa je enostavno določiti pred dejanskim razpadom; če takšno razpadanje ali niz zaporednih razpadov ustvari znano jedro, lahko prvotni produkt reakcije aritmetično določimo.[g] Spontana cepitev proizvaja različna jedra kot produkte, zato prvotnega nuklida ni mogoče določiti od njegovih produktov.[h]

Informacije, ki so na voljo fizikom, katerih namen je sintetizirati enega najtežjih elementov, so torej informacije, zbrane na detektorjih: lokacija, energija in čas prihoda delca na detektor ter podatki o njegovem razpadu. Fiziki analizirajo te podatke in skušajo ugotoviti ali jih je dejansko povzročil nov element in ali jih ni mogel povzročiti drugačen nuklid od tistega, katerega so iskali. Pridobljeni podatki pogosto ne zadoščajo za sklep, da je bil nov element vsekakor ustvarjen in če za opažene učinke ni druge razlage, so bile narejene napake pri interpretaciji podatkov.

Opombe[uredi | uredi kodo]

  1. V jedrski fiziki se element imenuje težek, če je njegovo atomsko število visoko; svinec (element 82) je en primer takega težkega elementa. Izraz "supertežki elementi" se običajno nanaša na elemente z atomskim številom, večjim od 103 (čeprav obstajajo tudi druge opredelitve, kot na primer, večje od 100[1] or 112;[2] sometimes, the term is presented an equivalent to the term "transactinide", which puts an upper limit before the beginning of the hypothetical superactinide series).[3] Izraz "težek izotop" (danega elementa) in "težko jedro" pomenita tisto, kar bi lahko razumeli v običajnem jeziku – izotop z veliko maso (za dani element) oziroma jedro z veliko maso.
  2. Leta 2009 je skupina pri JINR pod vodstvom Oganessiana objavila rezultate svojega poskusa ustvariti hasij s simetrično 136Xe + 136Xe reakcijo. V takšni reakciji niso opazili niti enega atoma, pri čemer je bila zgornja meja preseka, merilo verjetnosti jedrske reakcije, 2,5  pb.[4] Za primerjavo, reakcija, ki je privedla do odkritja hasija, 208Pb + 58Fe, je imela prerez ~ 20 pb (natančneje 19 + 19
    −11
     pb), kot so ocenili odkritelji.[5]
  3. Večja kot je energija vzbujenja, več nevtronov se izvrže. Če je energija vzbujanja nižja od energije, ki veže posamezen nevtron na preostanek jedra, se nevtroni ne izvržejo; namesto tega se jedro spojine de-ekscitira z oddajanjem gama žarkov.[9]
  4. Definicija Skupne delovne skupine IUPAC-a in IUPAP-a pravi, da je kemični element mogoče prepoznati kot odkritega le, če njegovo jedro ne razpade v 10−14 sekunde. Ta vrednost je bila izbrana kot ocena, koliko časa jedro potrebuje, da pridobi svoje zunanje elektrone in tako prikaže svoje kemijske lastnosti.[10] To število označuje tudi splošno sprejeto zgornjo mejo za razpolovno dobo sestavljenega jedra.[11]
  5. Ta ločitev temelji na tem, da se nastala jedra počasneje premikajo mimo tarče kot nereagirana jedra žarka. Ločilec vsebuje električna in magnetna polja, katerih učinki na premikajoče se delce se pri določeni hitrosti izničijo. [13] Takšnemu ločevanju lahko pomaga tudi meritev časa potovanja delca in meritev energije odboja; kombinacija obeh lahko omogoči oceno mase jedra.[14]
  6. Vseh načinov razpada ne povzroča elektrostatični naboj. Na primer, razpad beta povzroča šibka nuklearna sila.[19]
  7. Ker se masa jedra ne meri neposredno, temveč se izračuna na podlagi mase drugega jedra, se takšna meritev imenuje posredna. Možne so tudi neposredne meritve, ki pa večinoma niso na voljo za najtežja jedra.[20] O prvem neposrednem merjenju mase težkega jedra so poročali leta 2018 pri LBNL.[21] Masa je bila določena z lokacijo jedra po prenosu (lokacija pomaga določiti njegovo smer, ki je povezana z razmerjem med maso in nabojem jedra, saj je bil prenos opravljen v prisotnosti magneta).[22]
  8. Spontano fisijo je odkril sovjetski fizik Georgy Flerov,[23] glavni znanstvenik pri JINR in je bil to za ustanovo "hobi".[24] Za razliko so znanstveniki pri LBL menili, da informacije o cepitvi niso zadostne za trditev o sintezi elementa. Verjeli so, da spontana cepitev ni bila dovolj raziskana, da bi jo lahko uporabili za identifikacijo novega elementa, saj je bilo težko ugotoviti, da je jedro spojine izvrglo samo nevtrone in ne tudi nabite delce, kot so protoni ali delci alfa.[11] Tako so nove izotope raje povezali z že znanimi zaporednimi alfa razpadi.[23]

Sklici[uredi | uredi kodo]

  1. Krämer, K. (2016). "Explainer: superheavy elements". Chemistry World. Pridobljeno dne 2020-03-15.
  2. "Discovery of Elements 113 and 115". Lawrence Livermore National Laboratory. Arhivirano iz prvotnega spletišča dne 2015-09-11. Pridobljeno dne 2020-03-15.
  3. Eliav, E.; Kaldor, U.; Borschevsky, A. (2018). "Electronic Structure of the Transactinide Atoms". V Scott, R. A. (ur.). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons. str. 1–16. doi:10.1002/9781119951438.eibc2632. ISBN 978-1-119-95143-8.
  4. Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. (2009). "Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe". Physical Review C. 79 (2): 024608. doi:10.1103/PhysRevC.79.024608. ISSN 0556-2813.
  5. Münzenberg, G.; Armbruster, P.; Folger, H.; et al. (1984). "The identification of element 108" (PDF). Zeitschrift für Physik A. 317 (2): 235–236. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. Arhivirano iz prvotnega spletišča (PDF) dne 7 June 2015. Pridobljeno dne 20 October 2012.
  6. Subramanian, S. (2019). "Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist". Bloomberg Businessweek. Pridobljeno dne 2020-01-18.
  7. 7,0 7,1 Ivanov, D. (2019). "Сверхтяжелые шаги в неизвестное" [Superheavy steps into the unknown]. N+1 (ruščina). Pridobljeno dne 2020-02-02.
  8. Hinde, D. (2014). "Something new and superheavy at the periodic table". The Conversation. Pridobljeno dne 2020-01-30.
  9. 9,0 9,1 Krása, A. (2010). "Neutron Sources for ADS" (PDF). Czech Technical University in Prague. str. 4–8. Pridobljeno dne October 20, 2019.
  10. Wapstra, A. H. (1991). "Criteria that must be satisfied for the discovery of a new chemical element to be recognized" (PDF). Pure and Applied Chemistry. 63 (6): 883. doi:10.1351/pac199163060879. ISSN 1365-3075. Pridobljeno dne 2020-08-28.
  11. 11,0 11,1 Hyde, E. K.; Hoffman, D. C.; Keller, O. L. (1987). "A History and Analysis of the Discovery of Elements 104 and 105". Radiochimica Acta. 42 (2): 67–68. doi:10.1524/ract.1987.42.2.57. ISSN 2193-3405.
  12. 12,0 12,1 12,2 Chemistry World (2016). "How to Make Superheavy Elements and Finish the Periodic Table [Video]". Scientific American. Pridobljeno dne 2020-01-27.
  13. Hoffman 2000, str. 334.
  14. Hoffman 2000, str. 335.
  15. Zagrebaev 2013, str. 3.
  16. Beiser 2003, str. 432.
  17. Staszczak, A.; Baran, A.; Nazarewicz, W. (2013). "Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory". Physical Review C. 87 (2): 024320–1. arXiv:1208.1215. Bibcode:2013PhRvC..87b4320S. doi:10.1103/physrevc.87.024320. ISSN 0556-2813.
  18. Audi 2017, str. 030001-128–030001-138.
  19. Beiser 2003, str. 439.
  20. Oganessian, Yu. Ts.; Rykaczewski, K. P. (2015). "A beachhead on the island of stability". Physics Today. 68 (8): 32–38. Bibcode:2015PhT....68h..32O. doi:10.1063/PT.3.2880. ISSN 0031-9228. OSTI 1337838.
  21. Grant, A. (2018). "Weighing the heaviest elements". Physics Today. doi:10.1063/PT.6.1.20181113a.
  22. Howes, L. (2019). "Exploring the superheavy elements at the end of the periodic table". Chemical & Engineering News. Pridobljeno dne 2020-01-27.
  23. 23,0 23,1 Robinson, A. E. (2019). "The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War". Distillations. Pridobljeno dne 2020-02-22.
  24. "Популярная библиотека химических элементов. Сиборгий (экавольфрам)" [Popular library of chemical elements. Seaborgium (eka-tungsten)]. n-t.ru (ruščina). Pridobljeno dne 2020-01-07. Reprinted from "Экавольфрам" [Eka-tungsten]. Популярная библиотека химических элементов. Серебро — Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond] (ruščina). Nauka. 1977.