Uporabnik:Pinky sl/Peskovnik

Iz Wikipedije, proste enciklopedije
Jump to navigation Jump to search

Fizikalne značilnosti[uredi | uredi kodo]

Of the four fundamental interactions, gravitation is the dominant at astronomical length scales. Gravity's effects are cumulative; by contrast, the effects of positive and negative charges tend to cancel one another, making electromagnetism relatively insignificant on astronomical length scales. The remaining two interactions, the weak and strong nuclear forces, decline very rapidly with distance; their effects are confined mainly to sub-atomic length scales.

Od štirih osnovnih interakcij v astronomskih dolžinskih merilih prevladuje gravitacija. Gravitacijski učinki so kumulativni; to je v nasprotju z pozitivnimi in negativnimi učinki, ki se običajno medsebojno izničijo. Zaradi tega je v astronomskih dolžinskih merilih elektromagnetna interakcija relativno nepomembna. Preostali dve interakciji, šibke in močne jedrske sile, z razdaljo zelo hitro upadata; njuni učinki so omejeni predvsem na podatomskem dolžinskem merilu.

The Universe appears to have much more matter than antimatter, an asymmetry possibly related to the CP violation.[1] This imbalance between matter and antimatter is partially responsible for the existence of all matter existing today, since matter and antimatter, if equally produced at the Big Bang, would have completely annihilated each other and leaved only photons as a result of their interaction.[2][3] The Universe also appears to have neither net momentum nor angular momentum, which follows accepted physical laws if the Universe is finite. These laws are the Gauss's law and the non-divergence of the stress-energy-momentum pseudotensor.[4]

Za vesolje se zdi, da vsebuje veliko več snovi kot antimaterije. Ta asimetrija je verjetno povezana z kršitvijo simetrije CP.[5] To neravnovesje med snovjo in antimaterijo je delno odgovorno za obstoj vse snovi, ki obstaja v sedanjosti. Če bi snov in antimaterija ob prapoku nastali v enaki količini, bi se med seboj popolnoma izničili in pustili za sabo le fotone.[2][3] Za vesolje se tudi zdi, da nima niti gibalne niti vrtilne količine, ki bi sledili sprejetim fizikalnim zakonom, če je vesolje končno.[6]
Sestava vidnega vesolja
Earth's Location in the Universe SMALLER (JPEG).jpg
Diagram prikazuje kje se nahaja Zemlja v vesolju.

Velikost in predeli[uredi | uredi kodo]

Glej tudi: opazljivo vesolje in opazovalna kozmologija

The size of the Universe is somewhat difficult to define. According to the general theory of relativity, some regions of space may never interact with ours even in the lifetime of the Universe due to the finite speed of light and the ongoing expansion of space. For example, radio messages sent from Earth may never reach some regions of space, even if the Universe were to exist forever: space may expand faster than light can traverse it.[7]

Velikost vesolja je težko določiti. V skladu s splošno teorijo relativnosti, nekateri predeli prostora ne morejo nikoli priti v stik s krajevnim zaradi končne hitrosti svetlobe in stalnega širjenja prostora. Na primer, radijska sporočila poslana z Zemlje verjetno ne bodo nikoli dosegla nekaterih predelov prostora, tudi če bo vesolje obstajalo večno.[7]

Distant regions of space are assumed to exist and to be part of reality as much as we are, even though we can never interact with them. The spatial region that we can affect and be affected by is the observable universe. The observable universe depends on the location of the observer. By traveling, an observer can come into contact with a greater region of spacetime than an observer who remains still. Nevertheless, even the most rapid traveler will not be able to interact with all of space. Typically, the observable universe is taken to mean the portion of the Universe that is observable from our vantage point in the Milky Way.

Predpostavlja se, da oddaljeni predeli prostora obstajajo in da so del stvarnosti tako kot obstajamo tudi mi, čeprav z njimi nikoli ne bomo mogli imeti stika. Prostorski predel, ki lahko na nas vpliva in na katerega lahko vplivamo mi, je vidno vesolje. Vidno vesolja je odvisno od lege opazovalca. S premikanjem lahko opazovalec pride v stik z večjim predelom prostora-časa (spacetime) kot opazovalec, ki se ne premika. Kljub temu celo najbolj hiter popotnik ne more priti v stik z vsem prostorom. Značilno je, da vidno vesolje označuje del vesolja, ki ga opazujemo z našega vidnega mesta v krajevni galaksiji, Rimski cesti.

The proper distance—the distance as would be measured at a specific time, including the present—between Earth and the edge of the observable universe is 46 milijarda svetlobno leto (14 milijarda parsek), making the diameter of the observable universe about 91×10^9 ly (28×10^9 pc). The distance the light from the edge of the observable universe has travelled is very close to the age of the Universe times the speed of light, 13,8×10^9 ly (4,2×10^9 pc), but this does not represent the distance at any given time because the edge of the observable universe and the Earth have since moved further apart.[8] For comparison, the diameter of a typical galaxy is 30,000 light-years (9,198 parsecs), and the typical distance between two neighboring galaxies is 3 million light-years (919.8 kiloparsecs).[9] As an example, the Milky Way is roughly 100,000–180,000 light years in diameter,[10][11] and the nearest sister galaxy to the Milky Way, the Andromeda Galaxy, is located roughly 2.5 million light years away.[12]

Prava razdalja – razdalja, ki se meri v določenem času, vključno s sedanjostjo — med Zemljo in robom vidnega vesolja je 46 milijard svetlobih let (14 milijard parsekov), zaradi česar je premer vidnega vesolja približno 28×10^9 pc (91×10^9 ly). Razdalja, ki jo je svetloba prepotovala od roba vidnega vesolja, je zelo blizu starosti vesolja pomnoženo s hitrostjo svetlobe, 13,8×10^9 ly (4,2×10^9 pc), vendar to ne predstavlja razdalje v vsakem trenutku, ker se rob vidnega vesolja in Zemlja, od izmerjenega trenutka medsebojno oddaljujeta.[13] Za primerjavo, premer tipične galaksije je 30.000 svetlobnih let (9,198 parsekov), in tipična razdalja med dvema sosednjima galaksijama je 3 milijone svetlobnih let (919,8 kiloparsekov).[9] Kot primer: Premer Rimske ceste je približno 100.000–180.000 svetlobnih let,[14][15] in najbližja sestrska galaksija Rimske ceste je Andromedina galaksija, ki se nahaja približno 2,5 milijona svetlobnih let daleč.[16]

Because we cannot observe space beyond the edge of the observable universe, it is unknown whether the size of the Universe in its totality is finite or infinite.[17][18][19] Estimates for the total size of the universe, if finite, reach as high as megaparsecs, implied by one resolution of the No-Boundary Proposal.[20][a]

Ker se ne da opazovati prostor onstran roba vidnega vesolja, ni znano, ali je velikost vesolja v celoti končno ali neskončno.[17][21][22] Ocene skupne velikosti vesolja, če je končno, dosegajo  megaparsekov, podane v resoluciji No-Boundary Proposal.[23][a]

Starost in širitev[uredi | uredi kodo]

Astronomers calculate the age of the Universe by assuming that the Lambda-CDM model accurately describes the evolution of the Universe from a very uniform, hot, dense primordial state to its present state and measuring the cosmological parameters which constitute the model.[navedi vir] This model is well understood theoretically and supported by recent high-precision astronomical observations such as WMAP and Planck.[navedi vir] Commonly, the set of observations fitted includes the cosmic microwave background anisotropy, the brightness/redshift relation for Type Ia supernovae, and large-scale galaxy clustering including the baryon acoustic oscillation feature.[navedi vir] Other observations, such as the Hubble constant, the abundance of galaxy clusters, weak gravitational lensing and globular cluster ages, are generally consistent with these, providing a check of the model, but are less accurately measured at present.[navedi vir] Assuming that the Lambda-CDM model is correct, the measurements of the parameters using a variety of techniques by numerous experiments yield a best value of the age of the Universe as of 2015 of 13.799 ± 0.021 billion years.[24]

Astronomi so izračunali starost vesolja ob predpostavki, da model Lambda-CDM pravilno opisuje evolucijo vesolja iz enotnega, vročega, gostega izvornega stanja v sedanje stanje in da pravilno meri kozmološke parametre, ki sestavljajo model.[navedi vir] Običajno je v nabor opazovanj vključena anizotropija kozmičnega mikrovalovnega sevanja ozadja, razmerje svetlosti/rdečega premika za supernove tipa Ia, in obsežne jate galaksij, ki vsebujejo značilnost barionske akustične oscilacije[navedi vir]. Na splošno so druga opazovanja, kot so Hubblova konstanta, velika količina jat galaksij, šibko gravitacijsko lečenje in starost kroglastih zvezdnih kopic, zagotavljajo preverljivost modela, vendar se trenutno manj točno meri.[navedi vir] Ob predpostavki, da je model Lambda-CDM pravilen, prinaša merjenje parametrov z uporabo različnih tehnik s številnimi preskusi najboljšo oceno starosti vesolja iz leta 2015 13,799 ± 0,021 milijard let.[24]

Over time, the Universe and its contents have evolved; for example, the relative population of quasars and galaxies has changed[25] and space itself has expanded. Due to this expansion, scientists on Earth can observe the light from a galaxy 30 billion light years away even though that light has traveled for only 13 billion years; the very space between them has expanded. This expansion is consistent with the observation that the light from distant galaxies has been redshifted; the photons emitted have been stretched to longer wavelengths and lower frequency during their journey. Analyses of Type Ia supernovae indicate that the spatial expansion is accelerating.[26][27]

Sčasoma so se vesolje in njegove komponente razvile; na primer, relativna populacija kvazarjev in galaksij se je spremenila[28]. Tudi prostor sam se je razširil. Zaradi te širitve, lahko znanstveniki na Zemlji opazujejo svetlobo iz galaksij, ki se nahajajo 30 milijard svetlobnih let daleč, čeprav je svetloba potovala le 13 milijard let; prostor med njimi se je razširil. Ta širitev je v skladu z opazovanjem, da je bila svetloba iz oddaljenih galaksij v rdečem premiku; oddani fotoni so se med svojim potovanjem raztegnili na daljše valovne dolžine in nižje frekvence. Analize supernove tipa Ia kažejo, da se prostorska širitev pospešuje.[26][27]

The more matter there is in the Universe, the stronger the mutual gravitational pull of the matter. If the Universe were too dense then it would re-collapse into a gravitational singularity. However, if the Universe contained too little matter then the expansion would accelerate too rapidly for planets and planetary systems to form. Since the Big Bang, the universe has expanded monotonically. Perhaps unsurprisingly, our universe has just the right mass density of about 5 protons per cubic meter which has allowed it to expand for the last 13.8 billion years, giving time to form the universe as observed today.[29]

Več kot je snovi v vesolju, močnejša je medsebojna gravitacijska privlačnost snovi. Če bi bilo vesolje preveč gosto, bi se lahko ponovno zrušilo v gravitacijsko singularnost. Vendar, če bi vesolje vsebovalo premalo snovi, bi se širitev prehitro pospeševala in planeti in planetarni sistem se ne bi mogli oblikovati. Od prapoka poka, se je vesolje širilo monotono. Morda ni presenetljivo, da ima krajevno vesolje ravno pravšnjo gostoto mase približno 5 protonov na kubični meter, kar je omogočilo razširitev v zadnjih 13,8 milijarde let, kar je dalo čas za oblikovanje vesolja kot se ga vidi sedaj.[30]

There are dynamical forces acting on the particles in the Universe which affect the expansion rate. Before 1998, it was expected that the rate of increase of the Hubble Constant would be decreasing as time went on due to the influence of gravitational interactions in the Universe, and thus there is an additional observable quantity in the Universe called the deceleration parameter which cosmologists expected to be directly related to the matter density of the Universe. In 1998, the deceleration parameter was measured by two different groups to be consistent with −1 but not zero, which implied that the present-day rate of increase of the Hubble Constant is increasing over time.[31][32]


Dinamične sile, ki delujejo na delce v vesolju, vplivajo na stopnjo širitve. Pred letom 1998 se je pričakovalo, da se bo stopnja povečevanja Hubblove konstante z minevanjem časa zmanjšala zaradi vpliva gravitacijskih interakcij v vesolju. V vesolju je še dodatna količina, ki se jo lahko opazuje, ki se imenuje parameter zaviranja (deceleration parameter), za katerega kozmologi pričakujejo, da je neposredno povezan z gostoto snovi v vesolju. Leta 1998, sta dve različni skupini izmerili parameter zaviranja, da je skladen z −1, vendar ne z ničlo, kar pomeni, da se današnja stopnja povečevanja Hubblove konstante povečuje s časom.[31][33]

Prostor-čas[uredi | uredi kodo]

Glavna članka: prostor-čas in svetovnica.
Glej tudi: Lorentzeva transformacija

Prostori-časi so arene kjer se dogajajo vsi fizikalni dogodki. Osnovni elementi prostorov-časov so dogodki. V danem prostoru-času je dogodek definiran kot edinstvena lega v nekem času. Prostor-čas je unija vseh dogodkov (enako kot je premica unija vseh svojih točk).[34]

The Universe appears to be a smooth spacetime continuum consisting of three spatial dimensions and one temporal (time) dimension (an event in the spacetime of the physical Universe can therefore be identified by a set of four coordinates: (x, y, z, t) ). On the average, space is observed to be very nearly flat (with a curvature close to zero), meaning that Euclidean geometry is empirically true with high accuracy throughout most of the Universe.[35] Spacetime also appears to have a simply connected topology, in analogy with a sphere, at least on the length-scale of the observable Universe. However, present observations cannot exclude the possibilities that the Universe has more dimensions (which is postulated by theories such as the String theory) and that its spacetime may have a multiply connected global topology, in analogy with the cylindrical or toroidal topologies of two-dimensional spaces.[36][37] The spacetime of the Universe is usually interpreted from a Euclidean perspective, with space as consisting of three dimensions, and time as consisting of one dimension, the "fourth dimension".[38] By combining space and time into a single manifold called Minkowski space, physicists have simplified a large number of physical theories, as well as described in a more uniform way the workings of the Universe at both the supergalactic and subatomic levels.

Zdi se, da je vesolje enakomeren prostorsko-časovni kontinuum, ki je sestavljen iz treh prostorskih in ene časovne razsežnosti (dogodek v prostoru-času fizikalnega vesolja se zato lahko določi z nizom štirih koordinat:

(x, y, z, t) ). V povprečju je prostor skoraj raven (z ukrivljenostjo blizu nič), kar pomeni, da evklidska geometrija empirično velja z visoko točnostjo v večini vesolja.[35] Za prostor-čas se tudi zdi, da ima preprosto povezano topologijo, analogno s kroglo, vsaj na dolžinski lestvici vidnega vesolja. Vendar pa današnja opazovanja ne izključujejo možnosti, da ima vesolje več razsežnosti (kot domnevajo nekatere teorije, kakor je teorija strun) in da ima lahko njegov prostor-čas več povezanih globalnih topologij, analogno valjastim ali toroidnim topologijam dvorazsežnih prostorov.[36][37]

Prostor-čas vesolja se običajno razlaga z evklidskega stališča, s prostorom s tremi razsežnostmi in časom sestavljenim iz ene razsežnosti, četrte razsežnosti.[39] S kombiniranjem prostora in časa v eno mnogoterost, ki se imenuje prostor Minkowskega, so fiziki poenostavili veliko število fizikalnih teorij, kot so tudi enotneje opisali delovanje vesolja na nadgalaktičnem in podatomskem nivoju.

Spacetime events are not absolutely defined spatially and temporally but rather are known to be relative to the motion of an observer. Minkowski space approximates the Universe without gravity; the pseudo-Riemannian manifolds of general relativity describe spacetime with matter and gravity.

Prostor-čas dogodki niso absolutno določeni prostorsko in časovno, temveč so določeni relativno glede na gibanje opazovalca. Prostor Minkowskega se približuje vesolju brez gravitacije; psevdoriemannovska mnogoterost splošne teorije relativnosti opisuje prostor-čas s snovjo in gravitacijo.

Oblika[uredi | uredi kodo]

Glavni članek: Oblika Vesolja.
Tri možne oblike vesolja

General relativity describes how spacetime is curved and bent by mass and energy (gravity). The topology or geometry of the Universe includes both local geometry in the observable universe and global geometry. Cosmologists often work with a given space-like slice of spacetime called the comoving coordinates. The section of spacetime which can be observed is the backward light cone, which delimits the cosmological horizon.

Splošna relativnost opisuje kako prostor-čas ukrivljata in upogibata masa in energija (gravitacija). Topologija ali geometrija vesolja vključujeta lokalno geometrijo v opazljivem vesolju in globalno geometrijo. Kozmologi pogosto delajo s prostoru-podobno rezino prostora-časa, ki se imenuje comoving coordinates. Rezina prostora-časa, ki se jo lahko opazuje, je narobe obrnjen stožec svetlobe, ki razmejuje kozmološki horizont.


The cosmological horizon (also called the particle horizon or the light horizon) is the maximum distance from which particles can have traveled to the observer in the age of the Universe. This horizon represents the boundary between the observable and the unobservable regions of the Universe.[40][41] The existence, properties, and significance of a cosmological horizon depend on the particular cosmological model.

Kozmološki horizont (imenovan tudi horizont delcev ali horizont svetlobe), je največja razdalja iz katere so lahko delci pripotovali do opazovalca v času obstoja vesolja. Ta horizont predstavlja mejo med opaznimi in neopaznimi regijami vesolja.[40][42] Obstoj, lastnosti in pomembnost kozmološkega horizonta je odvisen od posameznega kozmološkega modela.

An important parameter determining the future evolution of the Universe theory is the density parameter, Omega (Ω), defined as the average matter density of the universe divided by a critical value of that density. This selects one of three possible geometries depending on whether Ω is equal to, less than, or greater than 1. These are called, respectively, the flat, open and closed universes.[43]

Pomemben parameter, ki opredeljuje prihodnji razvoj teorije vesolja, je parameter gostote, Omega (Ω). Ta je določen kot povprečna gostota snovi vesolja deljena s kritično gostoto. Parameter določi eno izmed treh geometrij glede na to ali je Ω enak, manjši ali večji kot 1 - te so poimenovana kot ravna, odprta in zaprta vesolja[43]

Observations, including the Cosmic Background Explorer (COBE), Wilkinson Microwave Anisotropy Probe (WMAP), and Planck maps of the CMB, suggest that the Universe is infinite in extent with a finite age, as described by the Friedmann–Lemaître–Robertson–Walker (FLRW) models.[44][36][45][46] These FLRW models thus support inflationary models and the standard model of cosmology, describing a flat, homogeneous universe presently dominated by dark matter and dark energy.[47][48]

Opazovanja, vključno s sondama Cosmic Background Explorer (COBE), Wilkinson Microwave Anisotropy Probe (WMAP) in Planckovimi zemljevidi CMB, kažejo na to, da je vesolje neskončno v obsegu s končno starostjo, kar so opisali s Friedmann–Lemaître–Robertson–Walker (FLRW) modeli.[44][45][46] Ti FLRW modeli tako podpirajo inflacijske in standardne modele kozmologije, ki opisujejo ravno, homogeno vesolje v katerem prevladuje temna snov in temna energija.[47][49]

Podpora življenju[uredi | uredi kodo]

The Universe may be fine-tuned; the Fine-tuned Universe hypothesis is the proposition that the conditions that allow the existence of observable life in the Universe can only occur when certain universal fundamental physical constants lie within a very narrow range of values, so that if any of several fundamental constants were only slightly different, the Universe would have been unlikely to be conducive to the establishment and development of matter, astronomical structures, elemental diversity, or life as it is understood.[50] The proposition is discussed among philosophers, scientists, theologians, and proponents of creationism.


Vesolje naj bi bilo natančno naravnano; hipoteza Natančna naravnanost vesolja je teza, da se pogoji, ki omogočajo obstoj opaznega življenja v vesolju, lahko pojavijo le, ko določene univerzalne temeljne fizikalne konstante ležijo znotraj ozkega obsega vrednosti. Če bi bila katerakoli od temeljnih konstant le rahlo drugačna, vesolje verjetno ne bi omogočalo vzpostavitve in razvoja snovi, astronomskih struktur, elementarne raznolikosti ali življenja.[50] O tezi se razpravlja med filozofi, znanstveniki, teologi in zagovorniki kreacionizma.

SKLICI[uredi | uredi kodo]

  1. "Antimatter". Particle Physics and Astronomy Research Council. October 28, 2003. Arhivirano iz prvotnega spletišča dne March 7, 2004. Pridobljeno dne August 10, 2006. 
  2. 2,0 2,1 Adamson, Allan (19 October 2017). "Universe Should Not Actually Exist: Big Bang Produced Equal Amounts Of Matter And Antimatter". TechTimes.com. Pridobljeno dne 26 October 2017. 
  3. 3,0 3,1 Smorra C.; et al. (20 October 2017). "A parts-per-billion measurement of the antiproton magnetic moment". Nature 550 (7676): 371–74. Bibcode:2017Natur.550..371S. doi:10.1038/nature24048. Pridobljeno dne 26 October 2017. 
  4. Landau & Lifshitz (1975, str. 361): "It is interesting to note that in a closed space the total electric charge must be zero. Namely, every closed surface in a finite space encloses on each side of itself a finite region of space. Therefore the flux of the electric field through this surface is equal, on th eone hand, to the total charge located in the interior of the surface, and on the other hand to the total charge outside of it, with opposite sign. Consequently, the sum of the charges on the two sides of the surface is zero."
  5. "Antimatter". Particle Physics and Astronomy Research Council. October 28, 2003. Arhivirano iz prvotnega spletišča dne March 7, 2004. Pridobljeno dne August 10, 2006. 
  6. Landau & Lifshitz (1975, str. 361): "It is interesting to note that in a closed space the total electric charge must be zero. Namely, every closed surface in a finite space encloses on each side of itself a finite region of space. Therefore the flux of the electric field through this surface is equal, on th eone hand, to the total charge located in the interior of the surface, and on the other hand to the total charge outside of it, with opposite sign. Consequently, the sum of the charges on the two sides of the surface is zero."
  7. 7,0 7,1 Michio Kaku (March 11, 2008). Physics of the Impossible: A Scientific Exploration into the World of Phasers, Force Fields, Teleportation, and Time Travel. Knopf Doubleday Publishing Group. str. 202–. ISBN 978-0-385-52544-2. 
  8. Christopher Crockett (February 20, 2013). "What is a light-year?". EarthSky. 
  9. 9,0 9,1 Rindler, p. 196. Napaka pri navajanju: Neveljavna oznaka <ref>; sklici poimenovani r196 so definirani večkrat z različno vsebino (glej stran pomoči).
  10. Christian, Eric; Samar, Safi-Harb. "How large is the Milky Way?". Pridobljeno dne November 28, 2007. 
  11. Hall, Shannon (May 4, 2015). "Size of the Milky Way Upgraded, Solving Galaxy Puzzle". Space.com. Pridobljeno dne June 9, 2015. 
  12. I. Ribas; C. Jordi; F. Vilardell; E.L. Fitzpatrick; R.W. Hilditch; F. Edward Guinan (2005). "First Determination of the Distance and Fundamental Properties of an Eclipsing Binary in the Andromeda Galaxy". Astrophysical Journal 635 (1): L37–L40. Bibcode:2005ApJ...635L..37R. arXiv:astro-ph/0511045. doi:10.1086/499161. 
    McConnachie, A. W.; Irwin, M. J.; Ferguson, A. M. N.; Ibata, R. A.; Lewis, G. F.; Tanvir, N. (2005). "Distances and metallicities for 17 Local Group galaxies". Monthly Notices of the Royal Astronomical Society 356 (4): 979–97. Bibcode:2005MNRAS.356..979M. arXiv:astro-ph/0410489. doi:10.1111/j.1365-2966.2004.08514.x. 
  13. Christopher Crockett (February 20, 2013). "What is a light-year?". EarthSky. 
  14. Christian, Eric; Samar, Safi-Harb. "How large is the Milky Way?". Pridobljeno dne November 28, 2007. 
  15. Hall, Shannon (May 4, 2015). "Size of the Milky Way Upgraded, Solving Galaxy Puzzle". Space.com. Pridobljeno dne June 9, 2015. 
  16. I. Ribas; C. Jordi; F. Vilardell; E.L. Fitzpatrick; R.W. Hilditch; F. Edward Guinan (2005). "First Determination of the Distance and Fundamental Properties of an Eclipsing Binary in the Andromeda Galaxy". Astrophysical Journal 635 (1): L37–L40. Bibcode:2005ApJ...635L..37R. arXiv:astro-ph/0511045. doi:10.1086/499161. 
  17. 17,0 17,1 Greene, Brian (2011). The Hidden Reality. Alfred A. Knopf. 
  18. "How can space travel faster than the speed of light?". Vannesa Janek. Universe Today. February 20, 2015. Pridobljeno dne June 6, 2015. 
  19. "Is faster-than-light travel or communication possible? Section: Expansion of the Universe". Philip Gibbs. 1997. Arhivirano iz prvotnega spletišča dne November 17, 2009. Pridobljeno dne June 6, 2015. 
  20. https://arxiv.org/abs/hep-th/0610199 "Susskind's Challenge to the Hartle-Hawking No-Boundary Proposal and Possible Resolutions"
  21. "How can space travel faster than the speed of light?". Vannesa Janek. Universe Today. February 20, 2015. Pridobljeno dne June 6, 2015. 
  22. "Is faster-than-light travel or communication possible? Section: Expansion of the Universe". Philip Gibbs. 1997. Arhivirano iz prvotnega spletišča dne November 17, 2009. Pridobljeno dne June 6, 2015. 
  23. https://arxiv.org/abs/hep-th/0610199 "Susskind's Challenge to the Hartle-Hawking No-Boundary Proposal and Possible Resolutions"
  24. 24,0 24,1 Planck Collaboration (2015). "Planck 2015 results. XIII. Cosmological parameters (See Table 4 on page 31 of pfd).". Astronomy & Astrophysics 594: A13. Bibcode:2016A&A...594A..13P. arXiv:1502.01589. doi:10.1051/0004-6361/201525830. 
  25. Phil Berardelli (March 25, 2010). "Galaxy Collisions Give Birth to Quasars". Science News. 
  26. 26,0 26,1 Riess, Adam G.; Filippenko; Challis; Clocchiatti; Diercks; Garnavich; Gilliland; Hogan; Jha; Kirshner; Leibundgut; Phillips; Reiss; Schmidt; Schommer; Smith; Spyromilio; Stubbs; Suntzeff; Tonry (1998). "Observational evidence from supernovae for an accelerating universe and a cosmological constant". Astronomical Journal 116 (3): 1009–38. Bibcode:1998AJ....116.1009R. arXiv:astro-ph/9805201. doi:10.1086/300499. 
  27. 27,0 27,1 Perlmutter, S.; Aldering; Goldhaber; Knop; Nugent; Castro; Deustua; Fabbro; Goobar; Groom; Hook; Kim; Kim; Lee; Nunes; Pain; Pennypacker; Quimby; Lidman; Ellis; Irwin; McMahon; Ruiz‐Lapuente; Walton; Schaefer; Boyle; Filippenko; Matheson; Fruchter; et al. (1999). "Measurements of Omega and Lambda from 42 high redshift supernovae". Astrophysical Journal 517 (2): 565–86. Bibcode:1999ApJ...517..565P. arXiv:astro-ph/9812133. doi:10.1086/307221. 
  28. Phil Berardelli (March 25, 2010). "Galaxy Collisions Give Birth to Quasars". Science News. 
  29. Sean Carroll and Michio Kaku (2014). How the Universe Works 3. End of the Universe. Discovery Channel. 
  30. Sean Carroll and Michio Kaku (2014). How the Universe Works 3. End of the Universe. Discovery Channel. 
  31. 31,0 31,1 "The Nobel Prize in Physics 2011". Pridobljeno dne April 16, 2015. 
  32. Overbye, Dennis (October 11, 2003). "A 'Cosmic Jerk' That Reversed the Universe". New York Times. 
  33. Overbye, Dennis (October 11, 2003). "A 'Cosmic Jerk' That Reversed the Universe". New York Times. 
  34. Schutz, Bernard (May 31, 2009). A First Course in General Relativity (2 izd.). Cambridge University Press. str. 142 & 171. ISBN 0-521-88705-4. 
  35. 35,0 35,1 WMAP Mission: Results – Age of the Universe. Map.gsfc.nasa.gov. Retrieved November 28, 2011.
  36. 36,0 36,1 36,2 Luminet, Jean-Pierre; Weeks, Jeffrey R.; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Philippe (October 9, 2003). "Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background". Nature 425 (6958): 593–95. Bibcode:2003Natur.425..593L. PMID 14534579. arXiv:astro-ph/0310253. doi:10.1038/nature01944.  Napaka pri navajanju: Neveljavna oznaka <ref>; sklici poimenovani Nat03 so definirani večkrat z različno vsebino (glej stran pomoči).
  37. 37,0 37,1 Luminet, Jean-Pierre; Boudewijn F. Roukema (1999). "Topology of the Universe: Theory and Observations". Proceedings of Cosmology School held at Cargese, Corsica, August 1998. Bibcode:1999ASIC..541..117L. arXiv:astro-ph/9901364. 
  38. Brill, Dieter; Jacobsen, Ted (2006). "Spacetime and Euclidean geometry". General Relativity and Gravitation 38 (4): 643–651. Bibcode:2006GReGr..38..643B. arXiv:gr-qc/0407022. doi:10.1007/s10714-006-0254-9. 
  39. Brill, Dieter; Jacobsen, Ted (2006). "Spacetime and Euclidean geometry". General Relativity and Gravitation 38 (4): 643–651. Bibcode:2006GReGr..38..643B. arXiv:gr-qc/0407022. doi:10.1007/s10714-006-0254-9. 
  40. 40,0 40,1 Edward Robert Harrison (2000). Cosmology: the science of the universe. Cambridge University Press. str. 447–. ISBN 978-0-521-66148-5. Pridobljeno dne May 1, 2011. 
  41. Andrew R. Liddle; David Hilary Lyth (April 13, 2000). Cosmological inflation and large-scale structure. Cambridge University Press. str. 24–. ISBN 978-0-521-57598-0. Pridobljeno dne May 1, 2011. 
  42. Andrew R. Liddle; David Hilary Lyth (April 13, 2000). Cosmological inflation and large-scale structure. Cambridge University Press. str. 24–. ISBN 978-0-521-57598-0. Pridobljeno dne May 1, 2011. 
  43. 43,0 43,1 "What is the Ultimate Fate of the Universe?". National Aeronautics and Space Administration. NASA. Pridobljeno dne August 23, 2015. 
  44. 45,0 45,1 Roukema, Boudewijn; Zbigniew Buliński; Agnieszka Szaniewska; Nicolas E. Gaudin (2008). "A test of the Poincare dodecahedral space topology hypothesis with the WMAP CMB data". Astronomy and Astrophysics 482 (3): 747–53. Bibcode:2008A&A...482..747L. arXiv:0801.0006. doi:10.1051/0004-6361:20078777. 
  45. 46,0 46,1 Aurich, Ralf; Lustig, S.; Steiner, F.; Then, H. (2004). "Hyperbolic Universes with a Horned Topology and the CMB Anisotropy". Classical and Quantum Gravity 21 (21): 4901–26. Bibcode:2004CQGra..21.4901A. arXiv:astro-ph/0403597. doi:10.1088/0264-9381/21/21/010. 
  46. 47,0 47,1 Planck collaboration (2014). "Planck 2013 results. XVI. Cosmological parameters". Astronomy & Astrophysics 571: A16. Bibcode:2014A&A...571A..16P. arXiv:1303.5076. doi:10.1051/0004-6361/201321591. 
  47. "Planck reveals 'almost perfect' universe". Michael Banks. Physics World. March 21, 2013. Pridobljeno dne March 21, 2013. 
  48. "Planck reveals 'almost perfect' universe". Michael Banks. Physics World. March 21, 2013. Pridobljeno dne March 21, 2013. 
  49. 50,0 50,1 Mark Isaak (ed.) (2005). "CI301: The Anthropic Principle". Index to Creationist Claims. TalkOrigins Archive. Pridobljeno dne October 31, 2007. 
  1. 1,0 1,1 Although listed in megaparsecs by the cited source, this number is so vast that its digits would remain virtually unchanged for all intents and purposes regardless of which conventional units it is listed in, whether it to be nanometres or gigaparsecs, as the differences would disappear into the error.