Racionalna funkcija

Iz Wikipedije, proste enciklopedije
Skoči na: navigacija, iskanje

Rácionalna fúnkcija je v matematiki funkcija v obliki ulomka, ki ima v števcu in imenovalcu polinom. Po navadi privzamemo, da polinom v imenovalcu ni konstantno enak nič.

Značilnosti racionalne funkcije[uredi | uredi kodo]

Racionalna funkcija je definirana za vsak x razen za tistega, ki je ničla polinoma v imenovalcu, ali pri katerem funkcija v imenovalcu sploh ni definirana(kar je posebej treba biti pozoren pri logaritemskih funkcijah)

Po osnovnem izreku algebre lahko polinom v števcu in v imenovalcu razcepimo. Če je ulomek okrajšan, dobimo pri tem v števcu ničle racionalne funkcije, v imenovalcu pa pole racionalne funkcije. V polih se graf racionalne funkcije pretrga in se približuje navpični asimptoti.

Ko gre x proti neskončno ali proti minus neskončno, se racionalna funkcija približuje asimptotskemu polinomu k(x), ki ga dobimo kot količnik pri deljenju števca z imenovalcem. Pri tem deljenju dobimo tudi ostanek - če obstaja točka, kjer je ostanek enak 0, potem tam racionalna funkcija seka asimptotski polinom. Če je asimptotski polinom prve stopnje, ga imenujemo asimptotska premica oziroma (glavna) asimptota.

Zgled[uredi | uredi kodo]

Racionalna funkcija

Racionalna funkcija ima:

  • ničle

Ničle racionalne funkcije, so ničle števca:

  • pola

Poli racionalne funkcije so ničle imenovalca:

  • asimptoto

Izračun asimptote:

seštejemo z
-ostanek, ker ne moremo več deliti z

Končni rezultat: