122.273
urejanj
m (m/dp/tn) |
m (m+/dp/slog) |
||
|width="25px"| ||width="25px"| ||width="25px"| ||width="25px"|
|width="25px"| ||width="25px"|
|width="25px" align="center"|<math>\
|width="25px"| ||width="25px"| ||width="25px"| ||width="25px"|
|width="25px"| ||width="25px"| ||width="25px"| ||width="25px"|
|-
| || || || || || || ||
|align="center"|<math>1</math> || ||align="center"|<math>\
| || || || || || || ||
|-
| || || || || ||
|align="center"|<math>1</math> || ||align="center"|<math>4</math> ||
|align="center"|<math>\
|align="center"|<math>1</math> ||
| || || || ||
| || || ||
|align="center"|<math>1</math> || ||align="center"|<math>6</math> ||
|align="center"|<math>15</math> || ||align="center"|<math>\
|align="center"|<math>15</math> || ||align="center"|<math>6</math> ||
|align="center"|<math>1</math> || || || ||
| || ||align="center"|<math>1</math> || ||align="center"|<math>8</math> ||
|align="center"|<math>28</math> || ||align="center"|<math>56</math> ||
|align="center"|<math>\
|align="center"|<math>28</math> || ||align="center"|<math>8</math> ||
|align="center"|<math>1</math> || ||
|align="center"|<math>1</math> || ||align="center"|<math>10</math> || ||align="center"|<math>45</math> ||
|align="center"|<math>120</math> || ||align="center"|<math>210</math> ||
|align="center"|<math>\
|align="center"|<math>120</math> || ||align="center"|<math>45</math> ||
|align="center"|<math>10</math> || ||align="center"|<math>1</math>
: <math> A_{10,10} = \begin{bmatrix}
\
1& \
1& 3& \
1& 4& 10& \
1& 5& 15& 35& \
1& 6& 21& 56& 126& \
1& 7& 28& 84& 210& 462& \
1& 8& 36& 120& 330& 792& 1716& \
1& 9& 45& 165& 495& 1287& 3003& 6435& \
1& 10& 55& 220& 715& 2002& 5005& 11440& 24310& \
\end{bmatrix} \; , </math>
Sorodna [[Catalanovo število|Catalanova števila]] ''C''<sub>''n''</sub> so dana z:
: <math> C_{n} = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{n! \; (n+1)!}, \qquad (n \geq 0) \!\, . </math>
Preprosta posplošitev središčnih binomskih koeficientov je dana kot:
|