Jeklo: Razlika med redakcijama

Iz Wikipedije, proste enciklopedije
Izbrisana vsebina Dodana vsebina
Vitosmo (pogovor | prispevki)
Vitosmo (pogovor | prispevki)
Vrstica 10: Vrstica 10:
Jeklo je elastično, [[prožnostni modul|modul elastičnosti]] ''E'' znaša od 2,0 do 2,2×10<sup>5</sup> N/mm².
Jeklo je elastično, [[prožnostni modul|modul elastičnosti]] ''E'' znaša od 2,0 do 2,2×10<sup>5</sup> N/mm².
Čisto železo ima [[trdota|trdoto]] le 60 [[trdota po Vickersu|HV]]. S postopki [[toplota|toplotne]] obdelave dosegamo v jeklu trdote tudi do 800 HV, s postopki toplotno kemične obdelave pa tudi vrednosti 2000 HV. [[Natezna trdnost]] čistega železa znaša približno 200 N/mm², jekla pa tudi do 4000 N/mm².
Čisto železo ima [[trdota|trdoto]] le 60 [[trdota po Vickersu|HV]]. S postopki [[toplota|toplotne]] obdelave dosegamo v jeklu trdote tudi do 800 HV, s postopki toplotno kemične obdelave pa tudi vrednosti 2000 HV. [[Natezna trdnost]] čistega železa znaša približno 200 N/mm², jekla pa tudi do 4000 N/mm².
[[File:Steel pd.png|thumb|420px|[[Fazni diagram]] železo-ogljik,z različnimi fazami, odvisno od temperature in vsebnosti ogljika]]
[[File:630px-Steel pd.png|thumb|420px|[[Fazni diagram]] železo-ogljik,z različnimi fazami, odvisno od temperature in vsebnosti ogljika]]


Železo je pogosto najti v zemeljski [[skorja (geologija) | skorji]] v obliki [[ruda|rude]], navadno železovega oksida, kot sta na primer [[magnetit]]in [[hematit]]. Železo se pridobiva iz rude tako, da se s pomočjo ogljika iz rude odstranjuje kisik, ki se sprošča v atmosfero kot ogljikov dioksid. Ta proces, znan kot [[taljenje]], je bil prvič uporabljen za kovine z nižjimi [[tališče|tališči]], kot sta na primer [[kositer]], ki se topi pri približno {{convert | 250 | C | F}} in [[baker]], ki se topi pri približno {{convert | 1100 | C | F |}}. Za primerjavo, lito železo se topi pri približno {{convert | 1375 | C | F}}. <Ref name = "Smelting">{{cite book|title=Smelting|publisher=Encyclopædia Britannica|year=2007|accessdate=2007-02-28}}</ref> V antičnih časih so topili majhne količine železa s segrevanjem rude v trdnem stanju, zakopane v goreče [[oglje]]; pridobljene grude železa so s kladivom obdelovali, da iz njih iztisnejo nečistoče. Če se pri tem previdno premika rudo po ognjišču, je mogoče obvladati vsebnost ogljika.
Železo je pogosto najti v zemeljski [[skorja (geologija) | skorji]] v obliki [[ruda|rude]], navadno železovega oksida, kot sta na primer [[magnetit]]in [[hematit]]. Železo se pridobiva iz rude tako, da se s pomočjo ogljika iz rude odstranjuje kisik, ki se sprošča v atmosfero kot ogljikov dioksid. Ta proces, znan kot [[taljenje]], je bil prvič uporabljen za kovine z nižjimi [[tališče|tališči]], kot sta na primer [[kositer]], ki se topi pri približno {{convert | 250 | C | F}} in [[baker]], ki se topi pri približno {{convert | 1100 | C | F |}}. Za primerjavo, lito železo se topi pri približno {{convert | 1375 | C | F}}. <Ref name = "Smelting">{{cite book|title=Smelting|publisher=Encyclopædia Britannica|year=2007|accessdate=2007-02-28}}</ref> V antičnih časih so topili majhne količine železa s segrevanjem rude v trdnem stanju, zakopane v goreče [[oglje]]; pridobljene grude železa so s kladivom obdelovali, da iz njih iztisnejo nečistoče. Če se pri tem previdno premika rudo po ognjišču, je mogoče obvladati vsebnost ogljika.

Redakcija: 08:52, 29. oktober 2015

Jekleni most
Pridobivanje surovega jekla

Jêklo je železova zlitina, pri katerih je poleg samega železa najpomembnejši zlitinski element ogljik. Ogljika je v jeklih razmeroma malo, lahko pa so dodani še drugi legirni elementi. Njegov masni delež je navadno manjši kot 2 %. Kljub temu ima najpomembnejši vpliv na uporabne lastnosti jekel.

Najpogostejša so ogljikova jekla. To so jekla, ki poleg železa vsebujejo le ogljik ter manjše količine mangana, silicija in aluminija. Slednje tri elemente dodamo z namenom, da bi zmanjšali ali povsem izničili negativen vpliv nečistoč, kot so žveplo, fosfor, kisik in dušik. Druga skupina jekel so legirana jekla. Ta – za razliko od ogljikovih jekel - vsebujejo še znatne količine kroma, niklja, molibdena ali katerega drugega elementa. Posebna legirana jekla, ki so znana kot nerjavna, vsebujejo najmanj 11,5 % kroma. Orodna jekla so posebna vrsta jekel. Namenjena so odrezovanju in oblikovanju kovinskih in nekovinskih materialov v želeno obliko. Nekatera jekla dobijo svojo končno obliko z litjem (jeklena litina), medtem ko večino jekel oblikujemo v končno obliko z gnetenjem (preoblikovanjem) in jih lahko prištevamo h gnetnim zlitinam.

Lastnosti jekla

Jeklena vrv

Jeklo je elastično, modul elastičnosti E znaša od 2,0 do 2,2×105 N/mm². Čisto železo ima trdoto le 60 HV. S postopki toplotne obdelave dosegamo v jeklu trdote tudi do 800 HV, s postopki toplotno kemične obdelave pa tudi vrednosti 2000 HV. Natezna trdnost čistega železa znaša približno 200 N/mm², jekla pa tudi do 4000 N/mm².

Fazni diagram železo-ogljik,z različnimi fazami, odvisno od temperature in vsebnosti ogljika

Železo je pogosto najti v zemeljski skorji v obliki rude, navadno železovega oksida, kot sta na primer magnetitin hematit. Železo se pridobiva iz rude tako, da se s pomočjo ogljika iz rude odstranjuje kisik, ki se sprošča v atmosfero kot ogljikov dioksid. Ta proces, znan kot taljenje, je bil prvič uporabljen za kovine z nižjimi tališči, kot sta na primer kositer, ki se topi pri približno 250 °C (482 °F) in baker, ki se topi pri približno 1.100 °C (2.010 °F). Za primerjavo, lito železo se topi pri približno 1.375 °C (2.507 °F). [1] V antičnih časih so topili majhne količine železa s segrevanjem rude v trdnem stanju, zakopane v goreče oglje; pridobljene grude železa so s kladivom obdelovali, da iz njih iztisnejo nečistoče. Če se pri tem previdno premika rudo po ognjišču, je mogoče obvladati vsebnost ogljika.

All of these temperatures could be reached with ancient methods that have been used since the Bronze Age. Since the oxidation rate of iron increases rapidly beyond 800 °C (1.470 °F), it is important that smelting take place in a low-oxygen environment. Unlike copper and tin, liquid or solid iron dissolves carbon quite readily. Smelting, using carbon to reduce iron oxides, results in an alloy (pig iron) that retains too much carbon to be called steel.[1] The excess carbon and other impurities are removed in a subsequent step.

Other materials are often added to the iron/carbon mixture to produce steel with desired properties. Nickel and manganese in steel add to its tensile strength and make the austenite form of the iron-carbon solution more stable, chromium increases hardness and melting temperature, and vanadium also increases hardness while making it less prone to metal fatigue.[2]

To inhibit corrosion, at least 11% chromium is added to steel so that a hard oxide forms on the metal surface; this is known as stainless steel. Tungsten interferes with the formation of cementite, allowing martensite to preferentially form at slower quench rates, resulting in high speed steel. On the other hand, sulfur, nitrogen, and phosphorus make steel more brittle, so these commonly found elements must be removed from the steel melt during processing.[2]

The density of steel varies based on the alloying constituents but usually ranges between 7.750 in 8.050 kg/m3 (484 in 503 lb/cu ft), or 775 in 805 g/cm3 (448 in 465 oz/cu in).[3]

Even in a narrow range of concentrations of mixtures of carbon and iron that make a steel, a number of different metallurgical structures, with very different properties can form. Understanding such properties is essential to making quality steel. At room temperature, the most stable form of pure iron is the body-centered cubic (BCC) structure called ferrite or α-iron. It is a fairly soft metal that can dissolve only a small concentration of carbon, no more than 0.005% at 0 °C (32 °F) and 0.021 wt% at 723 °C (1.333 °F). At 910 °C pure iron transforms into a face-centered cubic (FCC) structure, called austenite or γ-iron. The FCC structure of austenite can dissolve considerably more carbon, as much as 2.1%[4] (38 times that of ferrite) carbon at 1.148 °C (2.098 °F), which reflects the upper carbon content of steel, beyond which is cast iron.[5]

When steels with less than 0.8% carbon (known as a hypoeutectoid steel), are cooled, the austenitic phase (FCC) of the mixture attempts to revert to the ferrite phase (BCC). The carbon no longer fits within the FCC structure, resulting in an excess of carbon. One way for carbon to leave the austenite is for it to precipitate out of solution as cementite, leaving behind a surrounding phase of BCC iron that is low enough in carbon to take the form of ferrite, resulting in a ferrite matrix with cementite inclusions. Cementite is a hard and brittle intermetallic compound with the chemical formula of Fe3C. At the eutectoid, 0.8% carbon, the cooled structure takes the form of pearlite, named for its resemblance to mother of pearl. On a larger scale, it appears as a lamellar structure of ferrite and cementite. For steels that have more than 0.8% carbon, the cooled structure takes the form of pearlite and cementite.[6]

Perhaps the most important polymorphic form of steel is martensite, a metastable phase that is significantly stronger than other steel phases. When the steel is in an austenitic phase and then quenched rapidly, it forms into martensite, as the atoms "freeze" in place when the cell structure changes from FCC to a distorted form of BCC as the atoms do not have time enough to migrate and form the cementite compound. Depending on the carbon content, the martensitic phase takes different forms. Below approximately 0.2% carbon, it takes on a ferrite BCC crystal form, but at higher carbon content it takes a body-centered tetragonal (BCT) structure. There is no thermal activation energy for the transformation from austenite to martensite. Moreover, there is no compositional change so the atoms generally retain their same neighbors.[7]

Martensite has a lower density than does austenite, so that the transformation between them results in a change of volume. In this case, expansion occurs. Internal stresses from this expansion generally take the form of compression on the crystals of martensite and tension on the remaining ferrite, with a fair amount of shear on both constituents. If quenching is done improperly, the internal stresses can cause a part to shatter as it cools. At the very least, they cause internal work hardening and other microscopic imperfections. It is common for quench cracks to form when steel is water quenched, although they may not always be visible.[8]

Zgodovina

Načrtovana in nenaključna proizvodnja jekla poteka iz predhodno pridobljenega železa. Ker je jeklo zlitina železa in ogljika, pri zgodovini jekla dejansko obravnavamo železo. Danes večino železa pretvorijo v jeklo.

Železa, za razliko od nekaterih drugih kovin kot so zlato, srebro in platina, v naravi ne najdemo v elementarni obliki, ampak navadno v kombinaciji s kisikom in žveplom. Z obdelavo iz železove rude odstranimo kisik in dodamo ogljik ali druge elemente za izboljšanje lastnosti materiala.

Težavo pri pridobivanju železa v preteklosti je predstavljalo predvsem visoko tališče železa, pri katerem je možno iz rude izločiti kisik. Tališča, ki znaša 1535 °C, ni bilo možno doseči z odprtim ognjem, ki je lahko dosegel temperaturo do največ 1100 °C. Človek je poznal železovo rudo, vendar je ni znal obdelovati.

Do 20. stol. pr. n. št.

Najstarejše najdbe, ki kažejo prve znake uporabe železa, izhajajo iz starega Egipta in Mezopotamije in datirajo okoli 4000 let pr. n. št. Egipčani in Sumerci so v tem času iz železa izdelovali nakit, konice sulic in bodala. Železo, ki so ga obdelovali, vsebuje več kot 6 % niklja, tako kot snov meteoritov, kar nakazuje, da je izvor tega železa nezemeljski oz. iz meteoritov. Nikelj-železo je bilo primerno za obdelavo, ne da bi ga bilo potrebno predhodno segreti do temperature tališča čistega žleza.

Prve najdbe železnih predmetov, ki ne vsebujejo niklja in so zemeljskega izvora, so iz obdobja med 3000 in 2000 let pr. n. št. ter izhajajo iz Anatolije (danes Turčije), Egipta in Mezopotamije. Manjše kepe železa so našli v talilnicah bakra, kar podpira teorijo, da je bilo to železo stranski produkt proizvodnje bakra.

Z vpihovanjem zraka skozi votle cevi, so v pečeh dosegali višje temperature ognja (do 1200 °C), hkrati pa se je temperatura tališča železove rude, z dodajanjem ogljika v obliki oglja, znižala. Tako so iz železove rude dobili grude stopljenega železa ali t.i. železov cvet. Ne glede na to ali so železov cvet dobili kot stranski produkt ali z načrtno proizvodnjo, so v tem obdobju železovo rudo že lahko obdelovali. Ogret železov cvet so nadalje obdelovali s kladivom, da so se znebili neželenih primesi.

Od 20. stol. pr. n. št. do 14. stol. n. št.

Dosedanja odkritja damascenskega (s kovanjem vzorčasto okrašenega) jekla iz 20. stol. pr. n. št. izhajajo iz območja nekdanje Anatolije. Civilizaciji Hetitov iz Anatolije pripisujejo najstarejšo proizvodnjo jekla. Železo so mehanično ločili od ostalih snovi v železovi rudi in kovali vroče železo pri 800 °C, s čimer so dodatno izločili nečistoče v obliki tekoče žlindre. Tako so dobili kovano železo. Hetiti so iz jekla izdelovali orožje ali pa ga uporabljali kot menjalno sredstvo za srebro z Asirci.

Egipčani so svoje železne premete vrednotili zadosti, da so jih pokopavali v grobnice. Egipčanski vladar Tutankamon, ki je umrl leta 1323 pr. n. št. je bil pokopan z železnim bodalom.

Starim Grkom in Rimljanom je bil proces pridelave jekla tako zanimiv, da so ga opisovali celo pisatelji. Homerjeve pesnitve (cca 880 let pr. n. št.), Herodotova »Zgodovina« (446 let pr. n. št.), Aristotel (350 let pr. n. št.) in Plinijeva »Zgodovina narave« (leta 77) opisujejo procese pridelave jekla. Grki in Rimljani so jeklo uporabljali predvsem za meče. Kljub visoki natezni trdnosti ga niso uporabljali v konstrukcijske namene. Čeprav bi lahko izdelovali dolge traverze, je vse kar najdemo, nekaj majhnih nosilcev v kopališčih iz kovanega železa.

Indijci so za damasciranje uporabljali jeklo imenovano Wootz. To jeklo so pričeli proizvajati okoli 3. stoletja pr. n. št. na jugu Indije in je vsebovalo veliko ogljika. Wootz so dobili tako, da so železovo rudo karbonizirali, da so jo lahko stalili, zatem pa še dekarbonizirali, do stopnje vsebovanega ogljika od 1 % do 1,6 %. Jeklo so nato v obliki materiala in končnih izdelkov izvažali v Evropo, Kitajsko, Arabski svet in Bližnji vzhod, kljub temu pa je postopek izdelave zelo kvalitetnega jekla Wootz ostal skrivnost vse do prenehanja njegove proizvodnje v 17. stoletju n. št.

Kitajci, ki so železo in jeklo pričeli uporabljati približno 1000 let kasneje kot Hetiti, so močno razširili uporabo te kovine. Uporabljali so jo za orodje, orožje, posodo, kuhinjske pripomočke in tudi v konstrukcijske namene. Prvi železni viseči most so konstruirali in izvedli Kitajci. Njihovo prečiščevanje staljenega surovega železa in kovaško obdelovanje, je bilo okoli 500 let pr. n. št. zelo razvito, saj so enako tehnologijo Evropejci pričeli uporabljati šele 2000 let kasneje.

Od 15 stol. n. št. do 19 stol. n. št.

V Evropi lito železo do 14. stol. ni bilo cenjeno. S pričetkom uporabe jekla za topove pa se je zanimanje za železovo rudo povečalo. Pomemben pobudnik razvoja je bila tudi železnica s svojimi potrebami. Železničarji so potrebovali kvalitetnejši material za tirnice, ki so jih sicer morali menjavati vsakih 6 mesecev in so bile vzrok za številne nesreče.

Povečana pridelava jekla je terjala porabo velikih količin oglja, kar je pomenilo ogromno krčenje gozdov, zato je v 17. stol. prišlo do zamenjave oglja s premogom, vendar je premog vseboval žveplo, kar je naredilo jeklo krhko. Rešitev so našli pivovarji, ki jim je pri uporabi premoga za varjenje piva nezaželeno žveplo dajalo smrdljiv priokus pivu. Žvepla so se znebili tako, da so premog pekli, tako da je ostal čisti ogljik. Švedski kemik Torbern Olof Bergman je leta 1781 v svoji znanstveni razpravi Disseratatio Chemica de Analysi Ferri razkril pomembno vlogo ogljika v železni zlitini in determiniral kompozicijo litega železa, jekla in surovega železa. Odslej je bila razlika med železom in jeklom jasno določena.

Britanski izumitelj Henry Bessemer je izumil tehniko masovne proizvodnje jekla in jo leta 1855 patentiral. Bessemer je med projektiranjem topovskih izstrelkov za Britansko vojsko prišel na idejo, da bi iz poceni železne zlitine odstranjevali ogljik, namesto da so ga dodajali dragemu nizko karbonskemu surovemu jeklu. Bessemerjev postopek je zajemal vpihovanje zraka pod velikim pritiskom (s pomočjo parnega stroja) v staljeno surovo železo, kar je imelo dvojni učinek: kisik je nase vezal ogljik in se izločil kot ogljikov dioksid, hkrati pa je oksidacija dobavljala toploto, ki je bila potreba za ohranjanje taline, saj se je z zniževanjem ravni ogljika poviševala talilna temperatura. Odkritje je pomenilo pričetek poceni industrijske proizvodnje jekla.

Nemški inženir Carl Wilhelm Siemens je leta 1856 predstavil izboljšavo talilne peči. Iznašel je regeneracijski postopek, na osnovi katerega sta Francoza Emile in Pierre Martin leta 1864 konstruirala in patentirala peč. Ta je dobila ime Siemens-Martinova peč. Pri teh pečeh se uporablja postopek regeneracije toplote tako, da se v plamenih peči temperatura bistveno zviša s predogrevanjem zraka in generatorskega plina, ki služi kot gorivo. S konvektorskim postopkom se proizvajajo kisla in bazična jekla glede na vrsto obloge v konvektorjih, kjer se poleg grodlja tali tudi staro železo. Možnost uporabe starega železa pri proizvodnji novega je pomenila pomemben korak naprej v jeklarski industriji.

Angleža Percy Carlyle Gilchrist in Sidney Gilchrist Thomas sta leta 1878 modificirala Bessemerjev proces. Z dodajanjem apnenca ali dolomita sta iz taline odstranila fosfor in žveplo. Možnost odstranjevanja nečistoč je pomenil novo prelomnico, saj sta postali angleška in nemška železova ruda, ki sta vsebovali veliko fosforja, prav tako uporabni za pridelavo kvalitetnega jekla, kot je bila prej švedska ruda. Proces je po izumitelju poimenovan Thomasov proces.

Po številnih poizkusih izumiteljev v 19 stol. je elektropeči leta 1900 razvil Francoz Paul L.T. Heroult. V elektropečeh se je s pomočjo oglenih elektrod tik nad surovinami ustvaril električni oblok, ki je talil surovine ter zgoreval ogljik. Pri tem postopku ni bilo potrebno dovajati zraka, zato se v talini niso ustvarjali dodatni zračni mehurčki. Elektroobločni postopek je omogočil izdelavo visokokakovostnih in posebnih vrst jekel, ki so jih uporabljali za orodja in vzmetnice. Osnovna pomanjkljivost električnih peči je visoka količina porabljene energije.

Od 20. stol. n. št. do danes

V začetku 20. stol. je bila zaradi njegove neenotne kompozicije ukinjena uporaba litega in surovega železa v konstrukcijske namene. V skladu s tedanjimi predpisi je bilo pri gradnji dovoljeno uporabljati le jeklo. Konstrukcijsko jeklo je bilo material specifičnih oblik, zanesljive kemične sestave in točno določene trdote, kar pa je zagotavljalo primerno stopnjo varnosti konstrukcije.

Jeklo je material, ki je prisoten pri vsej arhitekturi 20. stoletja: v ploščah, vezivih, vijakih, žebljih, v obliki palic in mrež kot armatura v betonu. Konstrukcijsko jeklo je omogočilo razvoj hitro postavljivih poslovnih objektov, strehe velikih razponov brez vmesnih nosilcev in gradnjo nebotičnikov.

Pomemben napredek v jeklarski industriji je bilo odkritje nerjavečega jekla. Anglež Harry Brearley ga je prvič proizvedel z dodajanjem kroma železu v električni peči leta 1913. Po njegovem odhodu iz laboratorijev Brown Firth je z raziskavami nadaljeval dr. William H. Hatfield, ki je leta 1924 izumil še danes najbolj razširjeno vrsto nerjavečega jekla, t.i. jeklo »18/8«, katerega 18 % teže predstavlja krom in 8 % teže je niklja.

Danes se večina konstrukcijskega jekla proizvaja s procesom imenovanim osnovni oksidacijski postopek (BOS – ang. Basic oxygen steelmaking), ki je izboljšana metoda Bessemerjevega procesa v t.i. LD–konverterju, ki je poimenovan po dveh Avstrijskih krajih – Linz in Donawitz. Postopek je razvilo in prvič predstavilo Avstrijsko podjetje Voestalpine AG leta 1952. Z vpihovanjem čistega kisika na surovo železo se temperatura dvigne do 1700 °C, zniža se raven ogljika in pridobivamo nizko karbonsko jeklo. Bistvena izboljšava od Bessemerjevega postopka je uporaba kisika namesto zraka, ki skupaj z modernim prečiščevalnim procesom zagotavlja dobro zrnavost in dobro varljiv material z enakomerno trdnostjo in žilavostjo.

Leta 1952 je bila ustanovljena Evropska skupnost za premog in jeklo, z namenom zagotoviti rekonstrukcijo ključnih industrij po drugi svetovni vojni. Proces je bil za obe panogi zelo zahteven, vendar se je le tako oblikovala vitka, fit in moderna jeklarska industrija. Jeklo je postalo moderen material z obetajočo prihodnostjo. Danes je jeklo najpogosteje recikliran material na svetu. Ocenjujemo, da je od novo proizvedenega jekla približno 42,3 % recikliranega materiala. Vse jeklo, ki je na razpolago se reciklira. Dolga življenjska doba in uporaba v konstrukcijske namene pomeni zaloge za recikliranje v prihodnosti, toda da bi zapolnili današnje potrebe je potrebno proizvajati tudi jeklo iz železove rude.

Sistematika jekel

Fe-Fe3C diagram

Tehnična železa, med katere spada jeklo, so med kovinami oziroma zlitinami po uporabnosti najbolj razširjena. Gospodarska in tehnična uporabnost ni le v veliki količini, temveč tudi v izredno visoki uporabnosti lastnosti. Lastnosti jekel spreminjamo predvsem z legiranjem, s plastičnim preoblikovanjem v toplem in hladnem ter s toplotno obdelavo. Tako je mogoče natezno trdnost spreminjati od 200 do 4000 N/mm2, magnetne lastnosti pa od feromagnetnih do paramagnetnih. Korozijsko obstojnost lahko prilagajamo najrazličnejšim zahtevam, prav tako tudi tehnološke lastnosti. Jeklo lahko oblikujemo v vročem z ulivanjem, kovanjem, valjanjem in stiskanjem; v hladnem pa z valjanjem, vlečenjem, stiskanjem in z odrezovanjem. Jekla lahko izdelujemo tudi s postopki prašne metalurgije. Jeklene dele lahko spajamo z varjenjem, lotanjem, kovičenjem, vijačenjem.

Kaljeno jeklo

Kaljênje je postopek toplotne obdelave jekel, pri katerem jeklo najprej segrejemo do kalilne temperature (v področje avstenita), nato pa ga hitro ohladimo. Na ta način dobimo trdo strukturo - martenzit. Ogljikovo jeklo mora vsebovati zadostno količino ogljika (0,6 - 2,06 % ogljika), da je kaljivo. Lastnost jekel, da se jim pri kaljenju poveča trdota, imenujemo kaljivost. Pojem, ki označuje, ali se je predmet pri kaljenju prekalil po vsem prerezu, pa imenujemo prekaljivost. Zaradi hitrega ohlajanja se pri kaljenju pojavijo v materialu velike notranje napetosti; grozi nevarnost, da bi predmet počil. Da to preprečimo, zakaljen predmet popustimo. Popuščanje je postopek, pri katerem zakaljeni predmet segrejemo do 180 °C (ko martenzit še ne izgubi trdote); segrevamo takoj po kaljenju, še preden se predmet popolnoma ohladi do temperature okolice. Glavni namen kaljenje je navadno povečanje trdote jekla.

Razdelitev jekel

glede na kemično sestavo

glede na vrsto uporabe

Neporušitvene preiskave

S temi preiskavami odkrivamo napake v materialu, ne da bi ga poškodovali ali celo uničili in ga kasneje lahko vgradimo v kakšno napravo. Najbolj sta razširjeni dve metodi: preiskava z ultrazvokom in preiskava z rentgenskimi žarki

Največji proizvajalci jekla

Vir: Svetovna jeklarska organizacija (World Steel Association)

V milijonih ton
Uvrstitev
(2014)
2014[9] 2013[10] 2012[11] 2011[12] 2010 2009 2008 2007 Podjetje Sedež
1 98,1 96,1 93,6 97,2 98,2 77,5 103,3 116,4 ArcelorMittal Luksemburg
2 49,3 50,1 47,9 33,4> 35,0 26,5 37,5 35,7 Nippon Steel & Sumitomo Metal Japonska
3 47,1 45,8 42,8 44,4 52,9[13] 40,2[14] 33,3 31,1 Hebei Iron and Steel Kitajska
4 43,3 43,9 42,7 43,3 37,0 31,3 35,4 28,6 Baosteel Group Kitajska
5 41,4 38,4 39,9 39,1 35,4 31,1 34,7 31,1 POSCO Južna Koreja
6 35,3 35,1 32,3 31,9 30,1 26,4 23,3 22,9 Jiangsu Shagang Kitajska
7 34,3 33,7 30,2 29,8 22,1 20,1 16,0 16,2 Ansteel Kitajska
8 33,1 39,3 36,4 37,7 36,6 30,3 27,7 20,2 Wuhan Iron and Steel Kitajska
9 31,4 31,2 30,4 29,9 31,1 25,8 33,0 34,0 JFE Japonska
10 30,8 31,5 31,4 30,0 25,8 17,3 12,2 12,9 Shougang Kitajska
11 26,2 25,3 23,0 23,8 23,5 21,9 24,4 26,5 Tata Steel Indija
12 23,3 22,8 23,0 24,0 23,2 26,4 21,8[15] 23,8 Shandong Iron and Steel Group Kitajska
13 21,4 20,2 20,1 19,9 18,3 14,0 20,4 20,0 Nucor Corporation ZDA
14 20,6 17,2 17,1 16,3 12,9 8,4 9,9 10,0 Hyundai Steel Južna Koreja
15 19,7 20,4 21,4 22,0 22,3 15,2 23,2 21,5 United States Steel Corporation ZDA
16 19,0 19,0 19,8 20,5 21,6 14,2 20,4 18,6 Gerdau Brazilija
17 18,9 18,8 17,3 16,7 15,4 14,8 15,0 14,2 Maanshan Iron and Steel Company Kitajska
18 18,5 19,3 17,3[16] 19,2[17] 17,5 - - - - Kitajska
19 16,3 15,9 15,1 17,9 16,7 11,0 15,9 17,0 ThyssenKrupp Nemčija
20 16,3 16,8 15,1 16,5 22,1 9,1 7,4 7,6 Benxi Steel Kitajska
21 16,1 15,5 14,9 12,1 11,9 10,9 11,3 9,7 Novolipetsk Steel Rusija
22 15,5 16,1 15,9 16,8 16,3 15,3 17,7 16,2 Evraz Rusija
23 15,4 14,3 12,7 14,0 12,7 8,9 11,0 10,9 China Steel Tajvan
24 15,4 15,0 14,1 15,9 15,1 11,8 11,3 11,1 Valin Steel Group Kitajska
25 15,2 14,3 13,8 12,4 8,8 8,4 6,5 7,8 Jianlong Steel Kitajska
26 14,4 14,3 13,6 12,6 11,4 10,6 10,0 10,1 IMIDRO Iran
27 14,2 15,7 15,1 15,3 14,7 16,7 19,2 17,3 Severstal Rusija
28 13,6 13,2 - - - - - - Fangda Steel Kitajska
29 13,6 13,5 13,5 13,5 13,6 13,5 13,7 13,9 Steel Authority of India Limited Indija
30 13,0 11,9 13,0 12,2 11,4 9,6 12,0 13,3 Magnitogorsk Iron and Steel Works Rusija
31 12,7 11,8 8,5 N/A 6,4 5,5 3,8 3,0 JSW Steel Ltd Indija
32 11,4 12,7 13,2 11,2 9,8 9,9 7,5 6,2 Kitajska
33 11,2 14,3 12,5 14,4 13,8 7,0 8,2 9,1 Metinvest Ukrajina
34 10,9 10,3 7,7 9,4 10,0 8,5 9,0 Anyang Steel Kitajska
35 10,7 10,0 10,1 9,9 9,6 9,5 9,2 9,3 Kitajska
36 10,7 10,7 10,2 10,2 10,1 10,1 8,8 9,8 Baotou Steel Kitajska
37 10,5 9,7 7,3 5,8 N/A N/A N/A N/A Hebei Jingye Iron and Steel Kitajska
38 10,3 11,2 10,1 10,2 8,6 7,6 6,9 7,4 Kitajska
39 10,3 10,2 9,1 8,6 N/A N/A N/A N/A Handan Zongheng Iron and Steel Kitajska
Skupno 1637+ 1607 1548 1490 1413 1219 1329 1351 - -

Literatura

Glej tudi

Zunanje povezave

  1. 1,0 1,1 Smelting. Encyclopædia Britannica. 2007. {{navedi knjigo}}: |access-date= potrebuje |url= (pomoč)
  2. 2,0 2,1 »Alloying of Steels«. Metallurgical Consultants. 28. junij 2006. Pridobljeno 28. februarja 2007.
  3. Elert, Glenn. »Density of Steel«. Pridobljeno 23. aprila 2009.
  4. Sources differ on this value so it has been rounded to 2.1%, however the exact value is rather academic because plain-carbon steel is very rarely made with this level of carbon. See:
  5. Smith & Hashemi 2006, str. 363.
  6. Smith & Hashemi 2006, str. 365–372.
  7. Smith & Hashemi 2006, str. 373–378.
  8. »Quench hardening of steel«. Pridobljeno 19. julija 2009.
  9. "World Steel Association - Top steel-producing companies 2014"
  10. "World Steel Association - Top steel-producing companies 2012"
  11. World Steel Association: 2012/2013 Top 50 steel-producing companies and rank
  12. Top steel producers
  13. MetalBulletin: Top steelmakers 2010
  14. MetalBulletin: Top steelmakers 2009
  15. China's top steel producers in 2008
  16. MetalBulletin: Top steel producers in China
  17. MetalBulletin: Top steelmakers 2011