Razsežnostna analiza: Razlika med redakcijama

Iz Wikipedije, proste enciklopedije
Izbrisana vsebina Dodana vsebina
m r2.7.2) (robot Dodajanje: ar:تحليل بعدي (فيزياء)
Addbot (pogovor | prispevki)
m Bot: Migracija 26 interwikija/-ev, od zdaj gostuje(-jo) na Wikipodatkih, na d:q217113
Vrstica 156: Vrstica 156:
[[Kategorija:Meroslovje]]
[[Kategorija:Meroslovje]]
[[Kategorija:Razsežnostna analiza|*]]
[[Kategorija:Razsežnostna analiza|*]]

[[ar:تحليل بعدي (فيزياء)]]
[[ca:Anàlisi dimensional]]
[[cs:Fyzikální rozměr veličiny]]
[[de:Dimensionsanalyse]]
[[en:Dimensional analysis]]
[[es:Análisis dimensional]]
[[et:Dimensionaalanalüüs]]
[[fa:تحلیل ابعادی]]
[[fi:Dimensioanalyysi]]
[[fr:Analyse dimensionnelle]]
[[he:אנליזה ממדית]]
[[hi:विमीय विश्लेषण]]
[[ht:Analiz dimansyonèl]]
[[id:Analisis dimensi]]
[[it:Analisi dimensionale]]
[[ja:次元解析]]
[[kk:Өлшемділіктерді талдау]]
[[nl:Dimensie van een grootheid]]
[[nn:Dimensjonsanalyse]]
[[pl:Analiza wymiarowa]]
[[pt:Análise dimensional]]
[[ro:Analiză dimensională]]
[[ru:Анализ размерности]]
[[sv:Dimensionsanalys]]
[[tr:Boyut analizi]]
[[zh:因次分析]]

Redakcija: 16:03, 12. marec 2013

Razsežnostna analiza (tudi dimenzijska analiza) je orodje s katerim si v fiziki, kemiji, tehniki in delno v ekonomiji pomagamo razumeti značilnosti in obliko fizikalnih količin. S pomočjo razsežnostne analize število spremenljivk zmanjšamo na manjše število parametrov, ki nastopajo v enačbi, in s tem poenostavimo problem.

Velikost vsake fizikalne količine lahko opišemo kot kombinacijo osnovnih merskih enot, ki določajo dolžino, maso, čas, električni naboj in temperaturo, ki jih imenujemo razsežnosti (prava razsežnost pripada samo dolžini - prostoru in času). Razsežnosti osnovnih merskih enot označujemo z M, L, T, Q in Θ. Tako npr. za hitrost, ki jo lahko merimo v metrih na sekundo ali kilometrih na uro, napišemo, da ima hitrost razsežnost L/T ali LT -1. Podobno lahko razsežnot sile napišemo kot ML/T 2.

Običajno je pojem razsežnosti mnogo težje razumljiv, kot pojem merske enote. Masa je razsežnot, kilogram pa je merska enota z razsežnostjo mase (oznaka M).

Osnovne razsežnosti v fizikalnih količinah

V fizikalnih količinah uporabljamo naslednje osnovne razsežnosti:

količina oznaka
razsežnosti
dolžina
masa
čas
električni naboj
temperatura
množina snovi
svetilnost

Nekatere fizikalne količine iz mehanike in njihove razsežnosti

fizikalna količina oznaka enota izraz za razsežnost
masa kg
dolžina , , m
čas s
frekvenca Hz ( =1/s)
kotna hitrost 1/s
hitrost m/s
pospešek m/s²
gibalna količina m kg/s
gostota kg/m³
sila N ( = kg •m/s²)
specifična teža N/m³
tlak, nateg N/m²
modul elastičnosti N/m²
energija J ( = m²•kg/s²)
moč W ( = m²•kg/s³)
dinamična viskoznost N•s/m²
kinematična viskoznost m²/s

Izvedba razsežnostne analize

Razsežnostna analiza se izvaja na osnovi Buckinghamovega izreka π.

Analiza se izvaja v več korakih.

  • 1. korak

Določitev odvisnih spremenljiv. Predpostavimo, da je neodvisna spremenljivka odvisna od spremenljivk, ki jih označimo s .

.

Določimo tudi število razsežnosti, ki so potrebne za spremenljivko . To število označimo z . Za vsako spremenljivko lahko določimo tudi njeno razsežnost. Zgornji izraz lahko napišemo tudi kot:

To lahko v skladu s Buckinhamovim izrekom π zapišemo kot:

kjer so

To pomeni, da je:

….

kjer so , racionalna števila.

Skupaj imamo enačb.

  • 2. korak

Na levi strani enačb imamo brezrazsežne količine (posamezni ). To pomeni, da imajo vse razsežnosti stopnjo potence ˙(eksponent) enako 0.

  • 3. korak

Zamenjajmo vse količine, ki nastopajo v enačbah za z njihovimi izrazi za razsežnosti (uporabimo izraze za razsežnosti iz tabele). Potence razsežnosti na levi in desni strani morajo biti enake.

  • 4. korak

Tako dobimo sistem enačb, ki ga moramo rešiti. Z rešitvijo enačb v resnici dobimo vrednosti za , itd. Te vrednosti pa so potence posameznih razsežnosti in s tem tudi potence posameznih spremenljivk v analiziranem izrazu za fizikalno količino.

Zgled

Kot zgled vzemimo nihalo brez trenja (matematično nihalo), ki niha od ravnotežne lege za manj kot 5°. Dolžina nihala je enaka , masa nihala je enaka , težni pospešek označimo z

Za matematično nihalo velja:

V tem primeru je m = 4 (število spremenljivk – T, M, L in g) in n = 3 (število osnovnih fizikalnih količin – čas, masa in dolžina), torej je potreben (4 -3 = 1) 1 parameter, ki ga označimo s , ki je enak:

Vrednost za π je brez razsežnosti. Zamenjajmo posamezne količine z izrazi za razsežnost in dobimo:

Iz tega dobimo naslednje enačbe (za vsako razsežnost posebej mora biti eksponent enak nič)

za dolžino L:
za maso M:
za čas T:

Za rešitve sistema enačb dobimo:

,
,
,

To nam za da vrednost:

oziroma:

Pravi izraz za nihajni čas matematičnega nihala pa je:

Zunanje povezave