Racionalna funkcija: Razlika med redakcijama

Iz Wikipedije, proste enciklopedije
Izbrisana vsebina Dodana vsebina
HiW-Bot (pogovor | prispevki)
m r2.7.2) (robot Dodajanje: cs:Racionální funkce
RedBot (pogovor | prispevki)
m r2.7.2) (robot Dodajanje: vi:Hàm phân thức
Vrstica 67: Vrstica 67:
[[sv:Rationell funktion]]
[[sv:Rationell funktion]]
[[uk:Раціональна функція]]
[[uk:Раціональна функція]]
[[vi:Hàm phân thức]]
[[zh:有理函數]]
[[zh:有理函數]]

Redakcija: 22:10, 25. julij 2012

Rácionalna fúnkcija je v matematiki funkcija v obliki ulomka, ki ima v števcu in imenovalcu polinom. Po navadi privzamemo, da polinom v imenovalcu ni konstantno enak nič.

Lastnosti racionalne funkcije

Racionalna funkcija je definirana za vsak x razen za tistega, ki je ničla polinoma v imenovalcu, ali pri katerem funkcija v imenovalcu sploh ni definirana(kar je posebej treba biti pozoren pri logaritemskih funkcijah)

Po osnovnem izreku algebre lahko polinom v števcu in v imenovalcu razcepimo. Če je ulomek okrajšan, dobimo pri tem v števcu ničle racionalne funkcije, v imenovalcu pa pole racionalne funkcije. V polih se graf racionalne funkcije pretrga in se približuje navpični asimptoti.

Ko gre x proti neskončno ali proti minus neskončno, se racionalna funkcija približuje asimptotskemu polinomu k(x), ki ga dobimo kot količnik pri deljenju števca z imenovalcem. Pri tem deljenju dobimo tudi ostanek - če obstaja točka, kjer je ostanek enak 0, potem tam racionalna funkcija seka asimptotski polinom. Če je asimptotski polinom prve stopnje, ga imenujemo asimptotska premica oziroma (glavna) asimptota.

Zgled

Racionalna funkcija

Racionalna funkcija ima:

  • ničle

Ničle racionalne funkcije, so ničle števca:

  • pola

Poli racionalne funkcije so ničle imenovalca:

  • asimptoto

Izračun asimptote:

seštejemo z

-ostanek, ker ne moremo več deliti z

Končni rezultat: