Pitotov izrek

Iz Wikipedije, proste enciklopedije
Jump to navigation Jump to search
a + c = b + d
PA = PB

Pitotov izrek v ravninski geometriji iz leta 1725, imenovan po francoskem inženirju Henriju Pitotu, pravi, da sta v tangentnem štirikotniku (v katerega lahko včrtamo krožnico) vsoti dolžin nasprotnih stranic enaki, in v običajnem zapisu velja:[1][2]

Izrek je posledica dejstva, da sta odseka od presečišča soležnih tangent do dotikališč tangent enaka (na sliki PA = PB). Velja tudi obratno: krožnico lahko včrtamo v vsak tisti štirikotnik pri katerem sta vsoti nasprotnih stranic enaki.[3] Obrat izreka je leta 1846 dokazal Jakob Steiner. Pitot je izrek dokazal za tangentne mnogokotnike s sodim številom stranic in ga razširil na tangentne mnogokotnike z lihim številom stranic.

V enakokrakem trapezu, kjer je b = d, velja posebej:

in:

Sklici[uredi | uredi kodo]

  1. Pitot (1725).
  2. Humbert (1953).
  3. Bogomolny, Alexander. "When A Quadrilateral Is Inscriptible?". Cut-the-knot (angleščina). Pridobljeno dne 2012-07-11. 

Viri[uredi | uredi kodo]