Enačba

Iz Wikipedije, proste enciklopedije
Skoči na: navigacija, iskanje
Prva uporaba enačaja, v sodobnem zapisu je to 14x + 15 = 71. Iz dela Brus razuma (The Whetstone of Witte) Roberta Recordea (1557).

Enáčba je simbolični zapis za enakost dveh matematičnih izrazov. Izraza imenujemo leva stran in desna stran enačbe. Med njima stoji enačaj (znak =).

Spremenljivke, ki nastopajo v enačbi, imenujemo neznanke. Zgled preproste enačbe z eno neznanko:

 x + 1 = 2 \!\, .

Rešitev enačbe[uredi | uredi kodo]

Če enačba vsebuje samo eno neznanko, je rešitev enačbe tista vrednost neznanke, pri kateri enačaj velja. Če enačba vsebuje n neznank, je rešitev tista n-terica vrednosti neznank, pri kateri enačaj velja. Enačba ima lahko tudi več rešitev (več vrednosti neznanke oziroma več n-teric, pri katerih enačaj velja).

Zgled: enačba x2 = 5x − 6 ima dve rešitvi: x1 = 2, x2 = 3.

Če je enakost veljavna pri poljubnih vrednostih neznank, taki enačbi rečemo identična enačba (krajše identiteta).

Zgled identične enačbe: (x + 1)2 = x2 + 2x + 1. Rešitev te enačbe je poljubno število x.

Enačba, ki nima rešitve, se imenuje nerešljiva enačba. Zgled: x + 1 = x + 2.

Enačbi, ki imata enaki množici rešitev, sta med seboj enakovredni ali ekvivalentni. Zgled enakovrednih enačb: 3x = 6 in x + 1 = 3.

Reševanje enačbe[uredi | uredi kodo]

Reševanje enačbe pomeni iskanje rešitev enačbe. Reševanje poteka običajno tako, da enačbo preoblikujemo v drugo obliko, ki pa je prvotni enakovredna. Pri tem lahko uporabimo naslednje postopke:

  • preoblikujemo samo levo ali pa samo desno stran po pravilih za preoblikovanje izrazov (odpravljanje oklepajev, ureditev členov ipd)
  • na levi in desni strani lahko prištejemo isto število
  • na levi in desni strani lahko odštejemo isto število
  • levo in desno stran lahko pomnožimo z istim številom, ki pa ne sme biti enako 0
  • levo in desno stran lahko delimo z istim številom, ki pa ne sme biti enako 0
  • na levi in desni strani lahko izvedemo isto matematično funkcijo, ki pa mora biti bijektivna (npr.: kubiranje)

Pozor: Če levo in desno stran pomnožimo ali delimo z matematičnim izrazom, ki bi lahko bil enak 0 (za določeno vrednost spremenljivke), dobljena enačba ni nujno enakovredna prvotni. Če na levi in desni strani izvedemo funkcijo, ki ni bijektivna (npr.: kvadriranje), dobljena enačba ni nujno enakovredna prvotni. Takim postopkom se pri reševanju enačb poskušamo izogniti.

Vrste enačb[uredi | uredi kodo]

Najbolj znane vrste enačb so:

Najbolj znana enačba na svetu je verjetno Einsteinova E=mc^{2}.

Posebna vrsta enačbe je matematična formula ali obrazec: to je enačba, ki podaja navodilo za izračunavanje neke količine s pomočjo ustreznih podatkov, npr.: formula za površino krogle s polmerom r je: P=4\pi r^2\!\,.

Glej tudi[uredi | uredi kodo]